作为全球顶级的 AI 企业,OpenAI 推出的ChatGPT 系列模型,好用是好用,但也着实让人眼晕。
一会儿 GPT-4o
一会儿又整个 OpenAI-o4
单看后缀,还以为是双胞胎呢。
为了让内部「实战手册」的小伙伴搞清楚,之前还专门画了张图。
不过,还有一个难受的点,就是 OpenAI 上面的模型太多,到底哪个模式适合做什么?
哪怕是深度使用者,也不一定全能搞清楚。
正巧,今天 OpenAI 专门开了篇文章,介绍每个模型的优势。
接下来,我们一起看看每个模型更擅长做些什么。
GPT-4o
擅长日常任务: 头脑风暴、总结、电子邮件和创意内容。完全多模态:支持几乎所有功能(GPTs、数据分析、搜索、图像生成、画布、高级语音)和输入(文档、图像、CSV 文件、音频和视频)。
示例提示
- 将会议记录总结为关键行动项
- 项目启动后起草跟进邮件
- 校对我的报告
- 实时头脑风暴发布计划—请随意上传草图或截图
GPT-4.5
适合创意任务: 情商、清晰沟通、创造力,以及更协作、直观的头脑风暴方法。
示例提示
- 创建关于 AI 趋势的引人入胜的 LinkedIn 帖子
- 为新功能发布撰写产品描述
- 以富有同理心的语气开发客户道歉信
OpenAI o4-mini
快速技术任务:快速 STEM 相关查询、编程、视觉推理。
示例提示
- 从 CSV 文件中提取关键数据点
- 提供科学文章的快速摘要
- 快速修复我的 Python 追踪错误
OpenAI o4-mini-high
详细技术任务: 高级编码、数学、科学解释,思考更长时间以获得更高的准确性。
示例提示
- 解决复杂数学方程并解释步骤
- 起草用于数据提取的 SQL 查询
- 用通俗易懂的语言解释科学概念
OpenAI o3
**复杂或多步骤任务:**战略规划、详细分析、广泛编码、高级数学、科学、编码和视觉推理。
示例提示
- 为市场扩张制定风险分析
- 基于竞争数据起草业务战略大纲
- 在此 CSV 上运行多步骤分析—预测下季度并绘制趋势
- 查看管道指标,可视化数据,并搜索新的漏斗顶部策略
OpenAI o1 pro mode
复杂推理: 需要一些时间思考,但能为您提供复杂任务所需的准确性。
示例提示
- 为欧盟数据隐私推广起草详细的风险分析备忘录
- 生成关于新兴技术的多页研究摘要
- 使用理论模型创建财务预测算法
如果用一句话描述的话,我给大家也总结了一下:
- GPT-4o - 适用于日常工作中实时多模态推理的全能模型
- GPT-4.5 - 更广泛的知识和更好的语气控制—适合写作、编码和快速解决问题
- o4-mini - 用于代码、数学和视觉任务的快速、经济高效的推理
- o4-mini-high - o4-mini 的额外深度,用于更全面的技术答案
- o3 - 我们最强大的引擎,用于复杂的多步骤分析
- o1-pro - 经典模型,针对高风险、长篇分析工作进行了调整
OK,今天的分享就到这里。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。