CACC(协同式自适应巡航)模型,使用了Carsim2016和Matlab2018b以上版本的仿真软件。在这个项目中,我们建立了四辆车在Carsim和Simulink中进行协同式自适应巡航。其中,我们考虑了领航车速对车辆间距策略的影响,并采用了分层式控制方法。分层式控制器主要包括下层控制和上层控制。下层控制使用了车辆逆纵向动力学模型(包括逆发动机模型),而上层控制则使用了模糊MPC算法来调节相对距离、相对速度和加速度等参数。在这个过程中,模糊逻辑用于在线调整MPC的权重系数,而Stateflow用于进行模式切换。通过这些控制策略,我们实现了定速巡航和车队跟随的工况。
根据你提供的信息,这个项目涉及到自适应巡航、协同式自适应巡航、自动驾驶纵向控制以及模型预测控制算法和模糊推理方法。下面我将对这些领域的基础知识进行延申科普:
1. 自适应巡航(Adaptive Cruise Control,ACC):自适应巡航是一种汽车驾驶辅助系统,它通过使用车辆间的传感器和控制系统来维持与前车的安全距离,并自动调整车辆的速度以保持安全。ACC系统可以根据前车的速度和距离来自动加速和减速,提高驾驶的舒适性和安全性。
2. 协同式自适应巡航(Cooperative Adaptive Cruise Control,CACC):协同式自适应巡航是在自适应巡航的基础上进一步发展的技术,它允许车队中的车辆之间进行通信和协作。CACC系统可以通过车辆间的通信来实现更高级别的协同控制,提高车队的效率和安全性。
3. 自动驾驶纵向控制:自动驾驶纵向控制是指通过控制车辆的加速度和制动来实现自动驾驶系统中的纵向运动控制。这包括控制车辆的速度、跟随前车、保持安全距离等功能。自动驾驶纵向控制通常使用传感器、控制算法和执行器来实现。
4. 模型预测控制算法(Model Predictive Control,MPC):模型预测控制是一种基于数学模型的控制方法,它通过预测系统未来的行为来优化控制策略。MPC算法使用系统模型和优化算法来计算最优控制输入,以实现对系统的良好控制。
5. 模糊推理方法:模糊推理是一种基于模糊逻辑的推理方法,它允许处理不确定性和模糊性的问题。在模糊推理中,输入和输出的值可以是模糊的,而不是确定的。模糊推理方法可以用于调节控制系统中的参数,以适应不确定的环境和变化的条件。
CACC 协同式自适应巡航模型(仿真软件版本:Carsim2016,Matlab2018b及以上)
搭建四辆车在carsim和simulink进行协同式自适应巡航,其中间距策略考虑领航车速的影响,各个车辆采用分层式控制,分层式控制器主要分为下层控制(使用车辆逆纵向动力学模型(包括逆发动机模型 ))和上层控制(模糊MPC算法对相对距离,相对速度,加速度等进行调节,其中模糊逻辑对MPC的权重系数进行在线调整,stateflow进行模式切换),实现定速巡航和车队跟随工况。
?模型为本人亲自搭建,附带详细学习资料,适合入门自适应巡航,协同式自适应巡航,自动驾驶纵向控制,同时学习模型预测控制算法和模糊推理方法。
YID:96320688633031253
二斤青柿子
CACC (Cooperative Adaptive Cruise Control,协同式自适应巡航控制)是一种基于车队的纵向控制技术。本文将介绍如何使用Carsim2016和Matlab2018b及以上版本搭建四辆车进行协同式自适应巡航,并详细解释其中涉及的控制策略和算法。
首先,我们需要考虑车辆之间的间距策略。在协同式自适应巡航中,领航车的速度对后续车辆的间距产生影响。因此,我们需要设计一种间距策略,使得后续车辆能够根据领航车的速度来调整与前车的距离。这种间距策略需要在下层控制中实现。
下层控制使用车辆的逆纵向动力学模型,包括逆发动机模型。逆纵向动力学模型能够根据车辆的加速度和速度来计算发动机所需的输出功率。通过控制发动机的输出功率,我们可以实现定速巡航和车队跟随工况。
上层控制使用模糊MPC(Model Predictive Control,模型预测控制)算法来调节相对距离、相对速度和加速度等参数。模糊MPC算法基于模糊逻辑,能够在线调整MPC的权重系数,以适应不同的工况和车辆间的动态变化。此外,我们还使用stateflow进行模式切换,以实现不同控制工况的切换。
通过搭建四辆车在Carsim和Simulink中的协同式自适应巡航模型,我们可以进行各种实验和仿真。这些实验和仿真可以帮助我们深入了解自适应巡航、协同式自适应巡航和自动驾驶纵向控制等领域的知识。为了帮助读者更好地理解和学习这些知识,我们附带了详细的学习资料。
这些学习资料包括自适应巡航的入门知识、协同式自适应巡航的原理和方法、自动驾驶纵向控制的相关算法,以及模型预测控制算法和模糊推理方法的详细介绍。这些资料适合初学者入门,也适合已经有一定基础的人进一步深入学习。
总之,本文通过搭建四辆车在Carsim和Simulink中进行协同式自适应巡航,详细介绍了其中涉及的控制策略和算法。附带的详细学习资料可以帮助读者深入学习自适应巡航、协同式自适应巡航、自动驾驶纵向控制,以及模型预测控制算法和模糊推理方法。通过阅读本文和学习资料,读者将能够更好地理解和应用这些技术。
相关的代码,程序地址如下:http://nodep.cn/688633031253.html