数字图像处理(11): 图像平滑 (均值滤波、中值滤波和高斯滤波)

目录

1 图像增强——图像平滑

1.1 图像增强简介

1.2 图像平滑

2 均值滤波

3 中值滤波

4 高斯滤波

参考资料


1 图像增强——图像平滑

1.1 图像增强简介

图像增强是对图像进行处理,使其比原始图像更适合于特定的应用,它需要与实际应用相结合。对于图像的某些特征如边缘、轮廓、对比度等,图像增强是进行强调或锐化,以便于显示、观察或进一步分析与处理。图像增强主要是一个主观过程,而图像复原大部分是一个客观过程。图像增强的方法是因应用不同而不同的,研究内容包括:

 

 

1.2 图像平滑

图像平滑是一种区域增强的算法,平滑算法有邻域平均法、中指滤波、边界保持类滤波等。在图像产生、传输和复制过程中,常常会因为多方面原因而被噪声干扰或出现数据丢失,降低了图像的质量(某一像素,如果它与周围像素点相比有明显的不同,则该点被噪声所感染)。这就需要对图像进行一定的增强处理以减小这些缺陷带来的影响。

图像平滑 有均值滤波、方框滤波、中值滤波和高斯滤波等。下面将介绍常用的均值滤波、中值滤波和高斯滤波。

为了实验方便,首先给图像加一点噪声

 

代码如下所示:

# -*- coding:utf-8 -*-
import cv2
import numpy as np

# 读取图片
img = cv2.imread("zxp.jpg", cv2.IMREAD_UNCHANGED)
img_noise=img

cv2.imshow("src", img)

rows, cols, chn = img_noise.shape


# 加噪声
for i in range(5000):
    x = np.random.randint(0, rows)
    y = np.random.randint(0, cols)
    img_noise[x, y, :] = 255


cv2.imshow("noise", img_noise)

# 等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

#保存含噪声图像
cv2.imwrite("zxp_noise.jpg", img_noise)

 

运行结果如下图所示:

 


 

2 均值滤波

均值滤波是指任意一点的像素值,都是周围 N \times M 个像素值的均值。例如下图中,红色点的像素值是其周围蓝色背景区域像素值之和除25,25=5\times5 是蓝色区域的大小。

 

均值滤波详细的计算方法如下图所示:

 

其中5\times5的矩阵称为,针对原始图像内的像素点,采用核进行处理,得到结果图像,如下图所示:

 

 

提取 1/25 可以将核转换为如下形式:

Python调用OpenCV实现 均值滤波 的函数如下:

result = cv2.blur(原始图像,核大小)
其中,核大小是以(宽度,高度)表示的元组形式。常见的形式包括:核大小(3,3)和(5,5)。

                                                                               K=\frac{1}{9}\times \left[ \begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{matrix} \right]     

                                                                      K=\frac{1}{25}\times \left[ \begin{matrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \end{matrix} \right]

 

(1) 核大小为 3\times3

代码如下所示:

# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图片
img = cv2.imread('zxp_noise.jpg')
source = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 均值滤波
result = cv2.blur(source, (3, 3)) #可以更改核的大小

# 显示图形
titles = ['Source Image', 'Blur Image (3, 3)']
images = [source, result]
for i in range(2):
    plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

 

运行结果如下图所示:

 

(2) 核大小为 5\times5

代码如下所示:

# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图片
img = cv2.imread('zxp_noise.jpg')
source = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 均值滤波
result = cv2.blur(source, (5, 5)) #可以更改核的大小

# 显示图形
titles = ['Source Image', 'Blur Image (5, 5)']
images = [source, result]
for i in range(2):
    plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

 

运行结果如下图所示:

 

 

(2) 核大小为 10\times10

代码如下所示:

# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图片
img = cv2.imread('zxp_noise.jpg')
source = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 均值滤波
result = cv2.blur(source, (10, 10)) #可以更改核的大小

# 显示图形
titles = ['Source Image', 'Blur Image (10, 10)']
images = [source, result]
for i in range(2):
    plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

 

运行结果如下图所示:

 

注:

1)随着核大小逐渐变大,会让图像变得更加模糊;

2)如果设置为核大小为(1,1),则结果就是原始图像。

 


 

3 中值滤波

在使用邻域平均法去噪的同时也使得边界变得模糊。而中值滤波是非线性的图像处理方法,在去噪的同时可以兼顾到边界信息的保留。选一个含有奇数点的窗口W,将这个窗口在图像上扫描,把窗口中所含的像素点按灰度级的升或降序排列,取位于中间的灰度值来代替该点的灰度值。计算过程如下图所示:

 

Python调用OpenCV实现 中值滤波 的函数如下:

OpenCV主要调用 medianBlur() 函数实现中值滤波。图像平滑里中值滤波的效果最好。

dst = cv2.medianBlur(src, ksize)

其中,参数:

src 表示源图像;

ksize 表示核大小。核必须是大于1的奇数,如3、5、7等。

 

(1)核大小为 3\times3

代码如下所示:

# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图片
img = cv2.imread('zxp_noise.jpg')

# 中值滤波
result = cv2.medianBlur(img, 3)#可以更改核的大小

# 显示图像
cv2.imshow("source img", img)
cv2.imshow("medianBlur", result)

# 等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

 

运行结果如下图所示:

 

(2)核大小为 5\times5

代码如下所示:

# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图片
img = cv2.imread('zxp_noise.jpg')

# 中值滤波
result = cv2.medianBlur(img, 5) #可以更改核的大小

# 显示图像
cv2.imshow("source img", img)
cv2.imshow("medianBlur", result)

# 等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

 

运行结果如下图所示:

 

(3)核大小为 7\times7

代码如下所示:

# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图片
img = cv2.imread('zxp_noise.jpg')

# 中值滤波
result = cv2.medianBlur(img, 7) #可以更改核的大小

# 显示图像
cv2.imshow("source img", img)
cv2.imshow("medianBlur", result)

# 等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

 

运行结果如下图所示:

 

注:

1)随着核大小逐渐变大,会让图像变得更加模糊;

2)核必须是大于1的奇数,如3、5、7等;

3)在代码 dst = cv2.medianBlur(src, ksize) 中 填写核大小时,只需填写一个数即可,如3、5、7等,对比均值滤波函数用法。

 


 

4 高斯滤波

为了克服简单局部平均法的弊端(图像模糊),目前已提出许多保持边缘、细节的局部平滑算法。它们的出发点都集中在如何选择邻域的大小、形状和方向、参数加平均及邻域各店的权重系数等。

图像高斯平滑也是邻域平均的思想对图像进行平滑的一种方法,在图像高斯平滑中,对图像进行平均时,不同位置的像素被赋予了不同的权重。高斯平滑与简单平滑不同,它在对邻域内像素进行平均时,给予不同位置的像素不同的权值,下图的所示的 3\times3 和 5\times5 邻域的高斯模板。

(1)核大小为 3\times3

                                                                 \frac{1}{16}\times \left[ \begin{matrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \\ \end{matrix} \right]=\left[ \begin{matrix} {}^{1}\!\!\diagup\!\!{}_{16}\; & {}^{1}\!\!\diagup\!\!{}_{8}\; & {}^{1}\!\!\diagup\!\!{}_{16}\; \\ {}^{1}\!\!\diagup\!\!{}_{8}\; & {}^{1}\!\!\diagup\!\!{}_{4}\; & {}^{1}\!\!\diagup\!\!{}_{8}\; \\ {}^{1}\!\!\diagup\!\!{}_{16}\; & {}^{1}\!\!\diagup\!\!{}_{8}\; & {}^{1}\!\!\diagup\!\!{}_{16}\; \\ \end{matrix} \right]

 

(1)核大小为 5\times5

                                                                          \frac{1}{273}\times \left[ \begin{matrix} 1 & 4 & 7 & 4 & 1 \\ 4 & 16 & 26 & 16 & 4 \\ 7 & 26 & 41 & 26 & 7 \\ 4 & 16 & 26 & 16 & 4 \\ 1 & 4 & 7 & 4 & 1 \\ \end{matrix} \right]

 

高斯滤波让临近的像素具有更高的重要度,对周围像素计算加权平均值,较近的像素具有较大的权重值。如下图所示,中心位置权重最高为0.4。

 

 

Python中OpenCV主要调用 GaussianBlur() 函数,如下:

dst = cv2.GaussianBlur(src, ksize, sigmaX)

其中,参数:

src 表示原始图像;

ksize 表示核大小;

sigmaX 表示X方向方差。

:核大小(N, N)必须是奇数,X方向方差主要控制权重。

1)核大小为 3\times3

                                                                    K=\left[ \begin{matrix} 0.05 & 0.1 & 0.05 \\ 0.1 & 0.4 & 0.1 \\ 0.05 & 0.1 & 0.05 \\ \end{matrix} \right]

2)核大小为 5\times5

                                                                    K=\left[ \begin{matrix} 1 & 1 & 2 & 1 & 1 \\ 1 & 3 & 4 & 3 & 1 \\ 2 & 4 & 8 & 4 & 2 \\ 1 & 3 & 4 & 3 & 1 \\ 1 & 1 & 2 & 1 & 1 \\ \end{matrix} \right]

 

(1)核大小为 3\times3

代码如下所示:


# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图片
img = cv2.imread('zxp_noise.jpg')
source = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 高斯滤波
result = cv2.GaussianBlur(source, (3, 3), 0) #可以更改核大小

# 显示图形
titles = ['Source Image', 'GaussianBlur Image (3, 3)']
images = [source, result]
for i in range(2):
    plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

 

运行结果如下图所示:

 

(2)核大小为 5\times5

代码如下所示:

# encoding:utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图片
img = cv2.imread('zxp_noise.jpg')
source = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

# 高斯滤波
result = cv2.GaussianBlur(source, (5, 5), 0) #可以更改核大小

# 显示图形
titles = ['Source Image', 'GaussianBlur Image (5, 5)']
images = [source, result]
for i in range(2):
    plt.subplot(1, 2, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

 

运行结果如下图所示:

 

注:

1)随着核大小逐渐变大,会让图像变得更加模糊;

2)核大小(N, N)必须是大于1的奇数,如3、5、7等;

 

 

参考资料

[1] https://blog.csdn.net/Eastmount/article/details/82216380

[2] Python+OpenCV图像处理

 


 

如果觉得内容还不错的话,欢迎点赞、转发、收藏,还可以关注微信公众号、CSDN博客、知乎。
 

1. 微信公众号:

2. CSDN博客:https://xiongyiming.blog.csdn.net/

3. 知乎:https://www.zhihu.com/people/xiongyiming

 

1. 主要工作: 基于MATLAB图像处理的中值滤波均值滤波以及高斯滤波的实现与对比: a) 中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值. b) 均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。 c) 高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。 2. 代码功能: 实现中值滤波均值滤波以及高斯滤波,并对图像进行输出 3. 结果分析 a) 图像经过中值滤波后,高斯噪声没有被完全去除,椒盐噪声几乎被完全去除效果较好。经过均值滤波后不管是高斯噪声还是椒盐噪声大部分都没有被去除,只是稍微模糊化。经过高斯滤波后,高斯噪声和椒盐噪声几乎被很大程度的模糊化,原图好像被加上了一层蒙版。 【注】若添加图片分辨率过高会发出警报,如果可以正常输出则可以忽视。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TechArtisan6

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值