pytorch学习神经网络的搭建

Containers容器(骨架的基本搭建)

Module

Module给所有神经网络提供框架,是所有神经网络模块的基类,然后实现他内部的一些方法从而搭建自己的神经网络。

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

init初始化:
forward:前向传播

CONV2D

在这里插入图片描述
在这里插入图片描述
对网络结构检验

zls = Resnet()
print(zls)
input = torch.ones((63,3,32,32))
output = zls(input)
print(output.shape)
在init中用Sequential写forward
self.model1 = Sequential(#方便了forward的书写
	Conv2d(3,32,5,padding =2)
	Maxpool2d(2)
	)

用tensorboard的add_graph可以看写出来的神经网络的结构

writer= SummaryWriter("logs_seq")
writer.add_graph(zls,input)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kelinnn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值