风翼冰舟的博客

DL和ML学习者

【TensorFlow-windows】学习笔记八——简化网络书写

前言 之前写代码的时候都要预先初始化权重,还得担心变量是否会出现被重复定义的错误,但是看网上有直接用tf.layers构建网络,很简洁的方法。 这里主要尝试了不预定义权重,是否能够实现正常训练、模型保存和调用,事实证明阔以。 验证 训练与模型保存 很简洁的代码直接五十行实现了手写...

2018-08-29 17:49:41

阅读数 208

评论数 2

Openpose——windows编译(炒鸡简单)

前言 最近准备看看rtpose的代码,发现已经由openpose这个项目维护着了,由于经常在windows下调试代码,所以尝试了一下如何在windows下编译openpose源码,结果发现,我靠,炒鸡简单,Cmake一步搞定。 写博客的目的在于,为了避免后续openpose的项目组各种维护各种...

2018-08-27 17:00:10

阅读数 4149

评论数 16

【TensorFlow-windows】学习笔记七——生成对抗网络

前言 既然学习了变分自编码(VAE),那也必须来一波生成对抗网络(GAN)。 国际惯例,参考网址: 论文: Generative Adversarial Nets PPT:Generative Adversarial Networks (GANs) Generative Adversar...

2018-08-21 11:28:29

阅读数 345

评论数 0

【TensorFlow-windows】学习笔记六——变分自编码器

前言 对理论没兴趣的直接看代码吧,理论一堆,而且还有点复杂,我自己的描述也不一定准确,但是代码就两三句话搞定了。 国际惯例,参考博文 论文:Tutorial on Variational Autoencoders 【干货】一文读懂什么是变分自编码器 CS598LAZ - Variati...

2018-08-17 10:38:27

阅读数 1702

评论数 2

【TensorFlow-windows】学习笔记五——自编码器

前言 上一篇博客介绍的是构建简单的CNN去识别手写数字,这一篇博客折腾一下自编码,理论很简单,就是实现对输入数据的重构,具体理论可以看我前面的【theano-windows】学习笔记十三——去噪自编码器 国际惯例,参考博客: 当我们在谈论 Deep Learning:AutoEncoder ...

2018-08-15 10:03:20

阅读数 239

评论数 0

【TensorFlow-windows】学习笔记四——模型构建、保存与使用

前言 上一章研究了一些基本的构建神经网络所需的结构:层、激活函数、损失函数、优化器之类的,这一篇就解决上一章遗留的问题:使用CNN构建手写数字识别网络、保存模型参数、单张图片的识别 国际惯例,参考博客: tensorflow之保存模型与加载模型 【tensorflow】保存模型、再次加载模...

2018-08-03 15:34:26

阅读数 874

评论数 0

【TensorFlow-windows】学习笔记三——实战准备

前言 因为学习TensorFlow的内容较多,如果只看API会很无聊,可以结合实例去学习。但是在构建基本的模型之前,需要学一些准备知识:数据读取、预处理、优化器、损失函数、模型保存和读取 国际惯例,参考网址: TensorFlow中文社区 TensorFlow官方文档 如何选择优化器 o...

2018-08-02 11:57:23

阅读数 913

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭