多维高斯分布

 

我们常见的一维高斯分布公式为: 

 

                                                          $$ \mathit{N(x\vert \mu, \sigma^2)} = \frac{1}{\sqrt{2\pi\sigma^2}}exp[-\frac{1}{2\sigma^2}(x-\mu)^2] $$

 

拓展到高维就变成:

 

                                                   $$ \mathit{N(\overline{x}\vert \overline{\mu}, \Sigma)} = \frac{1}{(2\pi)^{\frac{D}{2}}}\frac{1}{|\Sigma|^{\frac{1}{2}}}exp[-\frac{1}{2}(\overline{x}-\overline{\mu})^{\mathit{T}}\Sigma^{-1}(\overline{x}-\overline{\mu})] $$

 

其中,$ \overline{x} $ 表示维度为 $ \mathit{D} $ 的向量, $ \overline{\mu} $ 则是这些向量的平均值, $ \Sigma $ 表示所有向量 $ \overline{x} $ 的协方差矩阵。 

本文简单探讨一下,上面这个 高维的公式是怎么来的。 

二维的情况

为了简单起见, 本文假设所有变量都是相互独立的。即对于概率分布函数 f(x_0,\dots, x_n) 而言, 有 f(x_0, x_1, \dots, x_n) = f(x_0)f(x_1)f(x_n) 成立。 

现在,我们用一个二维的例子推出上面的公式。

假设有很多变量 $ \overline{x} = \begin{bmatrix} x_1\\x_2 \end{bmatrix}\quad $, 他们的均值为 $ \overline{\mu} = \begin{bmatrix} \mu_1\\\mu_2 \end{bmatrix}\quad $, 方差为 $ \overline{\sigma} = \begin{bmatrix} \sigma_1\\\sigma_2 \end{bmatrix}\quad $

由于x_1 , x_2 是相互独立的, 所以, \overline{x} 的高斯分布函数可以表示为: 

 

  • 4
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Baobin Zhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值