决策树的创建过程

    创建过程是先横向寻找维度,再在该维度上按特征值切割。具体过程如下:
    数据集的特征
dataset=[[1,1,yes],
                [1,1,yes],
                [1,0,no],
                [0,1,no],
                [0,1,no]],
 

数据集最后一列是分类标签。
                首先输入数据集,提取出类标签列表,如果该列表只有一类,则直接返回类标签,如果数据集只有一列,则返回类别数最大的类标签。先横向尝试在不同维度上按最佳信息增益的方法,找出用哪一维度的数据分割最好,然后取出该维度标签,构造决策树;继而通过去重提取该维度的特征值,有多少个特征值即该维度标签下就有多少条分支,接着按该维度的特征值对数据集进行切割,切割后的数据集在横向上缺少了该维度,在纵向上只包含该特征值的行,对切割后的数据集,作为新的数据集传入重复上面的过程,直到所有分支构建完毕。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值