语音识别whisper的介绍、安装、错误记录

介绍

Whisper是OpenAI于2022年9月份开源的通用的语音识别模型。它是在各种音频的大型数据集上训练的模型,也是一个可以执行多语言语音识别、语音翻译和语言识别的多任务模型。
论文链接:https://arxiv.org/abs/2212.04356
github链接:https://github.com/openai/whisper

安装

Whisper主要是基于Pytorch实现,所以需要在安装有pytorch的环境中使用。

1、安装Whisper

pip install -U openai-whisper

或者

pip install git+https://github.com/openai/whisper.git

安装好之后,打开cmd界面,执行whisper,出现如下提示说明安装成功
在这里插入图片描述

2、安装FFmpeg

FFmpeg是一款音视频编解码工具。Whisper需要使用FFmpeg工具提取声音数据,所以需要安装配置FFmpeg。
参考博客:https://blog.csdn.net/weixin_45487348/article/details/130722161
安装好之后,,打开cmd界面,执行ffmpeg,出现如下提示说明安装成功
在这里插入图片描述

3、安装Rust

网上很多步骤说,需要安装Rust,用于实现快速分词,因为我暂时没用到这个,所以大家按需下载~

pip install setuptools-rust

使用

命令行方式

# 帮助信息
whisper --help

# 根据官网使用教程可以有以下常用方式
whisper music.mp3 --model tiny --language Chinese --device cuda:0 --initial_prompt "以下是普通话的句子"

上图为Whisper常用的一些参数介绍,通过执行 **whisper --help** 命令得到

Python代码

import whisper
model = whisper.load_model("base", "cpu")
mps_path = r"music.mp3"
result = model.transcribe(mps_path, fp16=False, language='Chinese')
print(result["text"])

说明:如果你的机器有GPU,那这里的**“fp16=False”**不是必须的。因为笔者本地测试机器没有GPU,只用用CPU进行测试,所以这里我设置了这个参数。

whisper模型

在这里插入图片描述

报错信息

以下是笔者调试过程中遇到的错误记录:

Error 1

FileNotFoundError: [WinError 2] 系统找不到指定的文件。

解决办法:
找到External Libraries —> Python 3.8 —> Libs —> subprocess.py —> Ctrl+F 查找“class POpen” ,将shell=False,改为 shell=True。
在这里插入图片描述
参考链接:https://blog.csdn.net/qq_24118527/article/details/90579328

Error 2

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xb2 in position 9: invalid start byte

解决办法:
这个问题表面上就是ffmpeg造成的,好像在读取文件的时候某个位置的编码有问题。实际上是由于上面的代码修改后,需要重新启动(在windows系统有这个问题)。
如果重新启动之后,还是出现上述错误,可以按照如下方式重新设置:Pycharm setting —> Tools —> Terminal —> 找到 shell path,将其修改为本地cmd。
在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

可爱的小张同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值