一、何为“模糊”
数学中所研究的量可以划分为确定性和不确定性。
确定性的代表是经典数学(几何、代数),而不确定性又分为随机性(概率论、随机过程),灰性(灰色系统)以及模糊性(模糊数学)。
在生活中也处处存在着模糊性:帅、高、白、年轻......
二、模糊集合和隶属函数
模糊集合与经典集合最大的不同之处在于承认亦此亦彼
数学中用隶属函数来刻画模糊集合(此处记为A)
此处 代表论域,0到1的区间表示可取中间的任意值A="年轻"、 表示年龄的集合,现假定隶属函数为:(不唯一)
隶属度含义:此处隶属度的值越接近1,越年轻。
模糊集合的表示方法:
模糊集合的分类:偏小型、中间型、偏大型
例:(小,中,大)、(冷,暖,热)、(年轻,中年,年老)
隶属函数的确定与模糊集合的类型息息相关
三、隶属函数的确定方法
在数模比赛中,先查找资料是否有客观的尺度
论域 模糊集 隶属度 设备 设备完好 设备完好率 产品 质量稳定 正品率 家庭 小康家庭 恩格尔系数 注:指标必须介于0和1之间,否则需进行归一化。
如果没有,则用指派法(直接套用已有分布作为隶属函数)
用的最多的是梯形分布,一般形式如下:(根据生活经验或别人的研究成果、常识)
如果有三个节点,则中间的函数为(两个max、min不同)
其他还有型分布、正态分布、柯西分布(在指数部分,一般倾向于简化模型,取1或2)等
正态分布(一般形式):
柯西分布(一般形式):
四、一级模糊综合评价应用模式
模糊综合评价可以用于:
- 把论域中的对象对应评语集中一个指定的评语
- 将方案作为评语集并选择一个最优的方案
模型:
- 因素集(评价指标集) 且指标间相关性不强
- 评语集(评价的结果)
- 权重集(指标的权重)
确定权重的方法:
无数据:层次分析法(附代码)_zedkyx的博客-CSDN博客_层次分析法代码
有数据:熵权法(附在最后)
- 确定模糊综合判断矩阵(从U到V到模糊关系)
其中,代表对于评语的隶属度(由隶属函数确定)
- 综合评判
进行模糊变换,即
综合后的评判可看作是V上的模糊向量,记为 (为隶属度)
若 ,评价对象划分为k类。
五、多级模糊综合评价模型
实质上是对因素集进行进一步划分(根据相关性~聚类分析?)
偷个懒~~~
熵权法
(1)对原始数据进行归一化/标准化处理
套话:将各指标值转化为标准化指标,有
即为第j个指标的样本均值和样本标准差
(2)根据信息论中信息熵的定义:一组数据的信息熵
其中
如果 ,则定义
(3)通过信息熵计算各指标的权重