【大模型】基于 LlaMA2 的高 star 的 GitHub 开源项目汇总

2023年7月19日Meta发布开源可商用模型Llama2,它是参数规模不等的生成文本模型集合。本文介绍了几个高star的GitHub开源项目,如FlagAlpha/Llama2 - Chinese、hiyouga/LLaMA - Efficient - Tuning等,这些项目大多有开放数据、可下载商用模型及详细微调过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Llama2 简介

2023年7月19日:Meta 发布开源可商用模型 Llama2。

Llama2 是一个预训练和微调的生成文本模型的集合,其规模从70亿到700亿个参数不等。

LLaMA2 的详细介绍可以参考这篇文章:【大模型】更强的 LLaMA2 来了,开源可商用、与 ChatGPT 齐平

下面介绍几个高 star 的 GitHub 开源项目:

star 数量截止日期2023年8月23日

开源项目汇总

NO1. FlagAlpha/Llama2-Chinese

  • star:4.2K

  • GitHub地址:
    https://github.com/FlagAlpha/Llama2-Chinese

  • 介绍:
    Llama中文社区,最好的中文Llama大模型,完全开源可商用。

  • 良好的社区
    在这里插入图片描述

  • 开放且不断增加的数据
    在这里插入图片描述

  • 开源可下载可商用的模型
    我们基于中文指令数据集对Llama2-Chat模型进行了微调,使得Llama2模型有着更强的中文对话能力。LoRA参数以及与基础模型合并的参数均已上传至Hugging Face https://huggingface.co/FlagAlpha,目前包含7B和13B的模型。

在这里插入图片描述

  • 详细的模型微调过程
    在这里插入图片描述
  • 其他
    包括:模型量化、推理假设、模型评测、集成LangChain框架等

NO2. hiyouga/LLaMA-Efficient-Tuning

  • star:3.2K

  • GitHub地址:
    https://github.com/hiyouga/LLaMA-Efficient-Tuning

  • 介绍:
    Easy-to-use LLM fine-tuning framework (LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, ChatGLM2)

  • 开放且不断增加的数据
    在这里插入图片描述

  • 开源可下载可商用的模型,且支持很多开源模型
    在这里插入图片描述

  • 支持多种模型训练、微调方法
    在这里插入图片描述
    支持单卡训练、分布式多级多卡并行训练,脚本很详细,建议看作者的GitHub。

NO3. yangjianxin1/Firefly

  • star:2.1K

  • GitHub地址:
    https://github.com/yangjianxin1/Firefly

  • 介绍:
    Firefly(流萤): 中文对话式大语言模型(全量微调+QLoRA),支持微调Llma2、Llama、Qwen、Baichuan、ChatGLM2、InternLM、Ziya、Bloom等大模型

  • 本项目主要内容如下:

    📗 支持全量参数指令微调、QLoRA低成本高效指令微调、LoRA指令微调(后续将会提供支持)。
    📗 支持绝大部分主流的开源大模型,如百川baichuan、Ziya、Bloom、LLaMA等。
    📗 支持lora与base model进行权重合并,推理更便捷。
    📗️ 模型裁剪:通过LLMPruner:大语言模型裁剪工具 ,开源裁剪后的Bloom模型权重 。在保留预训练中文知识的前提下,有效减少模型参数量,降低训练成本,提高训练效率。
    📗 整理并开源指令微调数据集:firefly-train-1.1M 、moss-003-sft-data、ultrachat、 WizardLM_evol_instruct_V2_143k、school_math_0.25M。
    📗 开源Firefly系列指令微调模型权重 。

  • 开放且不断增加的数据
    在这里插入图片描述

  • 开源可下载可商用的模型
    在这里插入图片描述

  • 详细的模型微调过程
    目前支持全量参数指令微调、QLoRA指令微调,后续会添加对LoRA的支持(经过实测,QLoRA的效率与效果优于LoRA)。
    在这里插入图片描述

在这里插入图片描述

  • 其他
    包括:权重合并、模型推理等

NO4. LinkSoul-AI/Chinese-Llama-2-7b

  • star:1.7K

  • GitHub地址:
    https://github.com/LinkSoul-AI/Chinese-Llama-2-7b

  • 介绍:
    开源社区第一个能下载、能运行的中文 LLaMA2 模型!
    全部开源,完全可商用的中文版 Llama2 模型及中英文 SFT 数据集,输入格式严格遵循 llama-2-chat 格式,兼容适配所有针对原版 llama-2-chat 模型的优化。

  • 开放且不断增加的数据
    我们使用了中英文 SFT 数据集,数据量 1000 万。
    数据集:https://huggingface.co/datasets/LinkSoul/instruction_merge_set

  • 开源可下载可商用的模型
    在这里插入图片描述

  • 详细的模型微调过程

DATASET="LinkSoul/instruction_merge_set"

DATA_CACHE_PATH="hf_datasets_cache"
MODEL_PATH="/PATH/TO/TRANSFORMERS/VERSION/LLAMA2"

output_dir="./checkpoints_llama2"

torchrun --nnodes=1 --node_rank=0 --nproc_per_node=8 \
    --master_port=25003 \
        train.py \
        --model_name_or_path ${MODEL_PATH} \
        --data_path ${DATASET} \
        --data_cache_path ${DATA_CACHE_PATH} \
        --bf16 True \
        --output_dir ${output_dir} \
        --num_train_epochs 1 \
        --per_device_train_batch_size 4 \
        --per_device_eval_batch_size 4 \
        --gradient_accumulation_steps 1 \
        --evaluation_strategy 'no' \
        --save_strategy 'steps' \
        --save_steps 1200 \
        --save_total_limit 5 \
        --learning_rate 2e-5 \
        --weight_decay 0. \
        --warmup_ratio 0.03 \
        --lr_scheduler_type cosine \
        --logging_steps 1 \
        --fsdp 'full_shard auto_wrap' \
        --fsdp_transformer_layer_cls_to_wrap 'LlamaDecoderLayer' \
        --tf32 True \
        --model_max_length 4096 \
        --gradient_checkpointing True

NO5. wenge-research/YaYi

  • star:1.5K

  • GitHub地址:
    https://github.com/wenge-research/YaYi

  • 介绍:
    雅意大模型在百万级人工构造的高质量领域数据上进行指令微调得到,训练数据覆盖媒体宣传、舆情分析、公共安全、金融风控、城市治理等五大领域,上百种自然语言指令任务。雅意大模型从预训练初始化权重到领域模型的迭代过程中,我们逐步增强了它的中文基础能力和领域分析能力,并增加了多轮对话和部分插件能力。同时,经过数百名用户内测过程中持续不断的人工反馈优化,我们进一步提升了模型性能和安全性。

    通过雅意大模型的开源为促进中文预训练大模型开源社区的发展,贡献自己的一份力量,通过开源,与每一位合作伙伴共建雅意大模型生态。

    News: 🔥 雅意大模型已开源基于 LLaMA 2 的中文优化模型版本,探索适用于中文多领域任务的最新实践。

  • 开放且不断增加的数据
    雅意大模型基于中科闻歌百万级高质量领域指令微调数据集训练而来,我们本次开源 5w 条训练数据集,可在我们的 Huggingface 数据仓库 https://huggingface.co/wenge-research 下载。数据集主要涵盖了金融、安全、舆情、媒体等几大领域,我们为各领域任务大部分指令数据添加了离散 prompt 前缀,以区分各领域数据。此外,训练数据中还包含部分安全增强数据、插件能力数据、多轮对话数据等。

  • 开源可下载可商用的模型
    在这里插入图片描述

  • 详细的模型微调过程

    1. 指令数据全参数微调
    2. 指令数据 LoRA 微调
    3. 多轮对话数据全参数微调
    4. 多轮对话数据 LoRA 微调

NO6. michael-wzhu/Chinese-LlaMA2

  • star:686

  • GitHub地址:
    https://github.com/michael-wzhu/Chinese-LlaMA2

  • 介绍:
    就在不久前,Meta最新开源了Llama 2模型,完全可商用,看来Meta势必要与OpenAI (ClosedAI) 硬刚到底。虽然Llama 2对原版的LlaMA模型做了升级,但是其仍然对中文没有太好的支持,需要在中文上做定制化。所以我们决定在次开展Llama 2的中文汉化工作:

    🚀 Chinese-LlaMA2-chat-sft:对Llama-2直接进行有监督微调,
    采用开源指令微调数据,如UltraChat, 各种版本的中文alpaca语料(如Chinese-alpaca, BELLE)等;
    注意LlaMA词表本身是支持中文的,所以我们会训练不扩充词表版本和扩充词表版本
    ⏳ Chinese-LlaMA2: 对Llama 2进行大规模中文预训练;
    第一步:先在42G中文语料上进行训练;后续将会加大训练规模
    ⏳ Chinese-LlaMA2-chat: 对Chinese-LlaMA2进行指令微调和多轮对话微调,以适应各种应用场景和多轮对话交互。
    注意,遵循相应的许可,我们将发布完整的, 合并LoRA权重的完整,且同时发布LoRA权重,方便开源社区使用。

    同时,我们将会围绕Chinese-LlaMA2打造各种垂直领域模型:

    ⏳Chinese-LlaMA2-chatmed: Chinese-LlaMA2医学领域大模型,支持多轮在线问诊;
    ⏳Chinese-LlaMA2-tcm: Chinese-LlaMA2中医药大模型,专注于中医药细分领域,赋能中医药传承

    【】后续工作值得期待

  • 团队介绍
    本项目由华东师范大学计算机科学与技术学院智能知识管理与服务团队完成,团队指导老师为王晓玲教授。

  • 指令微调

    对LlaMA-2进行指令微调(不扩充词表/扩充词表),也就是现在常见的SFT,见SFT-README.md

  • 扩充词表和扩展embedding层
    我们现在采用的方案是:使用Chinese-LLaMA的词表,该词表是对llama原始词表的扩充,将词汇量从32000扩展到49953大小。同时LlaMA-2模型会进行embedding层的resize,即采用随机初始化的参数扩展embedding层和lm_head层。

  • 继续预训练
    由于扩展词表后,LlaMA-2的embedding层和lm_head层会有随机初始化的参数,所以我们需要采用大规模的预训练学习中文语料的知识。继续预训练运行以下命令(数据,模型的路径,卡数等需要自行配置):

    CUDA_VISIBLE_DEVICES="2,3" ./src/further_ft/run_train.sh
    
<think>好的,用户需要寻找一个开源、支持本地部署的实时对话数字人解决方案。首先,我得理解这几个关键词:开源、实时对话、数字人、本地部署。实时对话意味着系统需要快速响应,可能涉及流式语音处理和自然语言处理。本地部署则要求解决方案能在用户自己的服务器或设备上运行,不需要依赖外部云服务。 接下来,我需要回忆之前提供的引用内容,看看有没有相关的开源项目。引用3提到GitHub上一个3.1K星的项目,是业界首个流式语音合成系统,适合实时交互的数字人应用,强调低延迟和响应速度,这符合实时对话的需求。引用2中的RTranslator虽然主要是翻译应用,但它的实时对话模式可能对数字人的交互设计有参考价值,不过不确定是否直接相关。引用4的EasyDarwin是流媒体服务,支持RTSP协议,可能在数字人的视频流传输中有用,但用户主要关注的是对话部分,可能不是核心。引用1提到的系统可能不相关,但源码获取方式可能有帮助。 所以,重点应放在引用3的流式语音合成系统上。用户需要的是完整的数字人解决方案,而不仅仅是语音合成。因此可能需要整合其他组件,比如语音识别(ASR)、自然语言处理(NLP)、对话管理,以及可能的动画渲染。需要确认是否有开源项目整合了这些模块并支持本地部署。 另外,考虑用户可能需要其他推荐,比如结合多个开源工具。例如,使用Mozilla DeepSpeech或Kaldi进行语音识别,Rasa或Dialogflow(虽然Dialogflow不是开源)进行对话管理,加上引用3的流式语音合成,再使用Blender或Unity进行数字人动画。不过这样整合起来比较复杂,用户可能希望更集成的解决方案。 是否有其他开源项目?比如OpenAI的ChatGPT,但它是云服务,且不开源。可能有基于Transformer的开源模型,如Hugging Face的库,可以本地部署。此外,数字人方面,可能有像OpenCV处理面部动画,或者使用3D引擎如Unity或Unreal Engine,但这些都需要大量开发工作。 综合来看,引用3的流式语音合成是关键组件,但需要搭配其他工具。用户可能需要分步骤实施,先处理语音输入,再处理NLP,生成响应,再合成语音并驱动数字人形象。此外,引用4的EasyDarwin可能用于视频流的传输,如果数字人需要实时视频输出的话。 在回答中,需要明确推荐引用3的项目作为核心,并建议结合其他开源工具。同时,提醒用户本地部署的资源要求,比如计算能力和存储。可能还需要提到社区支持和文档是否完善,这对集成和部署很重要。 最后,检查是否有其他引用被忽略。引用2的RTranslator虽然主要做翻译,但它的实时对话架构可能对处理双向语音交互有帮助,可以作为参考,但可能不是直接解决方案。因此,回答应聚焦于引用3,并补充其他可能的工具,形成一个完整的解决方案。</think>### 开源实时对话数字人解决方案推荐 针对**开源、支持本地部署的实时对话数字人**需求,需重点关注**低延迟交互能力**与**本地化部署灵活性**。以下是综合推荐方案及技术要点: --- #### 1. **流式语音合成系统(核心组件)** 引用[^3]中提到的**GitHub 3.1K Star流式语音合成系统**是关键组件。其特点包括: - **流式生成**:支持边生成边输出语音,显著降低响应延迟(通常控制在500ms内),适合实时对话场景。 - **开源与本地化**:代码完全开放,支持本地部署,无需依赖云端服务。 - **多语言支持**:可集成多语种语音库,适配全球化需求。 **部署建议**: - 需搭配性能GPU(如NVIDIA T4)以保障合成速度。 - 可结合`FFmpeg`或`GStreamer`实现音频流封装与传输。 --- #### 2. **对话管理与自然语言处理(NLP)** 推荐以下开源工具链: - **语音识别(ASR)**:使用`Whisper`(OpenAI开源模型)或`Mozilla DeepSpeech`,支持本地部署且兼容多语言。 - **意图理解**:采用`Rasa`框架构建对话管理模块,支持自定义对话流程与知识库集成。 - **大语言模型(LLM)**:本地部署轻量级模型如`Llama 2`或`Alpaca`,用于生成自然对话响应。 ```python # 示例:Rasa对话流程(简化版) from rasa.core.agent import Agent agent = Agent.load("models/20231001-173445.tar.gz") response = await agent.handle_text("用户输入内容") ``` --- #### 3. **数字人形象驱动与渲染** - **2D动画引擎**:使用`Live2D`或`Unity`开源插件实现口型同步与表情驱动。 - **3D模型渲染**:基于`Blender`或`Unreal Engine`构建拟真数字人,结合`ARKit`面部捕捉数据。 - **流媒体传输**:引用[^4]的`EasyDarwin`支持RTSP协议,可用于低延迟传输数字人视频流。 --- #### 4. **完整架构示例** ```plaintext 用户语音输入 → Whisper(ASR) → Rasa(NLP) → Llama 2(响应生成) → 流式语音合成 → 数字人动画渲染 → EasyDarwin流媒体输出 ``` --- #### 5. **部署注意事项** - **硬件要求**:需至少16GB内存、NVIDIA GPU(CUDA支持)及SSD存储。 - **隐私合规**:本地部署可避免数据外传,符合GDPR等法规要求。 - **社区支持**:上述工具均有活跃开源社区,可通过GitHub提交Issue获取技术支持。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

szZack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值