行人重识别 ReID
前言
ReID介绍
ReID 全称 Re-identification,也就是重识别的意思。近几年该领域最火的一个方向是行人重识别(Person ReID),不像人脸识别只使用面部特征,行人重识别是利用一个人的整体特征来识别一个人,其经常被作为人脸识别的一个补充。
下图是行人重识别任务的简单示意图,也就是输入一个人的全身像,算法可以在大量的行人中找出该人的所有图像。该任务跟人脸识别任务基本相同,都属于度量学习(metric learning)的范畴。
当然,ReID 不仅限于行人,也可以检索车辆等其他物体。

行人重识别任务的最理想结果是和人脸识别任务一样的,如果有人脸识别基础,那么ReID理解起来将会非常简单。本文将记录本人做行人重识别任务从输入到输出的完整(训练和推理)过程。
一、行人重识别输入是什么?
和人脸识别一样分为两个任务。先是在图像中用行人检测模型检测出行人,然后将检测出的行人扣出,输入到reid模型中提取行人的特征,通过特征的距离比对,设置一个合理的阈值,判断是否是同一个人。



本文介绍了行人重识别(PersonReID)的任务,它利用全身特征识别个体,作为人脸识别的补充。ReID涉及输入处理、特征提取、loss函数设计和推理阶段。输入包括行人检测后的图像;特征提取使用ResNet50-IBN等大型backbone;loss函数通常采用Triplet loss、Center loss和交叉熵loss等;推理阶段则进行特征比对。
最低0.47元/天 解锁文章
6465

被折叠的 条评论
为什么被折叠?



