大语言模型-阿里云研发的通义千问-72B

通义千问-72B是阿里云的720亿参数大模型,基于Transformer,使用3万亿多语言数据预训练。它在多项评测中表现出色,覆盖全面的词表和长上下文,是当前开源模型中的最优选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通义千问-72BQwen-72B)是阿里云研发的通义千问大模型系列的720亿参数规模的模型。Qwen-72B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。

主要有以下特点:

  1. 大规模高质量训练语料:使用超过3万亿tokens的数据进行预训练,包含高质量中、英、多语言、代码、数学等数据,涵盖通用及专业领域的训练语料。通过大量对比实验对预训练语料分布进行了优化。
  2. 强大的性能:Qwen-72B在多个中英文下游评测任务上(涵盖常识推理、代码、数学、翻译等),效果显著超越现有的开源模型。具体评测结果请详见下文。
  3. 覆盖更全面的词表:相比目前以中英词表为主的开源模型,Qwen-72B使用了约15万大小的词表。该词表对多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强和扩展。
  4. 较长的上下文支持:Qwen-72B支持32k的上下文长度。

模型参数

评测效果

我们选取了MMLU,C-Eval,GSM8K, MATH, HumanEval, MBPP, BBH, CMMLU等目前较流行的benchmark,对模型的中英知识能力、翻译、数学推理、代码等能力进行综合评测。Qwen-72B模型在所有benchmark上均取得了开源模型中的最优表现。


 

<think>好的,用户的题是关于通义的介绍,我需要先确认通义的基本信息。首先,通义阿里云推出的一个大型语言模型,由阿里巴巴达摩院开发。接下来,我应该查找它的发布时间和主要功能。根据搜索结果,它于2023年4月发布,支持多轮对话、逻辑推理和多语言理解。 然后,用户可能关心它的应用场景。通义可以用于智能客服、内容生成、编程辅助等。需要提到它支持API接入,方便企业集成。另外,不同版本如Qwen-7B和Qwen-72B,适合不同规模的应用,这点也很重要。 技术特点方面,通义基于Transformer架构,可能使用了混合专家模型。需要解释它的训练数据和性能优势,比如在中文理解和多任务处理上的表现。还要注意开源版本和商业版本的区别,以及如何获取使用权限,比如通过阿里云平台申请。 用户可能还想知道如何快速体验,比如官网提供的在线试用入口或API文档。此外,相关的工具链和插件支持,如与钉钉、支付宝的集成,也是值得提到的点。 最后,确保回答结构清晰,分点说明,避免使用步骤词汇。同时,生成的相关题要基于介绍内容,比如技术架构、与其他模型的比较以及商业应用方法。</think>通义是由阿里巴巴达摩院研发的大规模语言模型,2023年4月正式发布。该模型基于Transformer架构,支持中英文文本理解与生成,参数规模覆盖18亿到720亿多个版本。具备多轮对话、逻辑推理和代码生成能力,在C-Eval、MMLU等基准测试中表现出色。 核心功能包含文本创作、数据分析、编程辅助和知识答四大模块。通过阿里云平台提供API接口,支持企业定制化部署,已应用于钉钉智能办公、天猫精灵智能交互等场景。开源版本Qwen-7B和Qwen-72B支持学术研究,商业版本需通过阿里云申请使用权限。 技术特性采用混合专家系统(MoE)架构,训练数据包含万亿级token的多语言语料。支持8K长文本上下文理解,通过量化压缩技术实现端侧部署。最新版本集成实时搜索引擎,可自动调用外部知识库更新应答内容。 体验方式包括官网在线测试、API接口调用和开源模型下载。开发文档提供Python/Java多种语言SDK,支持LangChain生态集成。企业用户可通过阿里云控制台申请定制化训练服务,个人开发者可免费使用基础版API(每日限额1000次)。 ```python # API调用示例 from dashscope import Generation response = Generation.call( model='qwen-max',
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大F的智能小课

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值