阿里开源大模型 Qwen-72B 私有化部署

近期大家都知道阿里推出了自己的开源的大模型千问72B,据说对于中文非常友好,在开源模型里面,可谓是名列前茅。

图片

千问拥有有强大的基础语言模型,已经针对多达 3 万亿个 token 的多语言数据进行了稳定的预训练,覆盖领域、语言(重点是中文和英文)。

Qwen 模型在一系列基准数据集(例如 MMLU、C-Eval、GSM8K、MATH、HumanEval、MBPP、等)上优于类似模型大小的基线模型,这些数据集评估了模型在自然语言理解、数学方面的能力Qwen-72B 在所有任务上都比 LLaMA2-70B 取得了更好的性能,并且在 10 任务中的 7 个上优于 GPT-3.5。

技术交流群

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

建了技术交流群&星球!想要本文源码、进交流群的同学,可以直接加微信号:mlc2060。加的时候备注一下:研究方向 +学校/公司,即可。然后就可以拉你进群了。

方式①、添加微信号:mlc2060,备注:技术交流
方式②、微信搜索公众号:机器学习社区,后台回复:技术交流

在这里插入图片描述

在这里插入图片描述

图片

图片

部署

从下图我们可以看到,千问大模型的版本逐渐升级,对于显卡的要求也是逐渐变高,一张4090恐怕已经难以支持,想要省钱的小伙伴可以选择共享算力平台。

图片

图片

算力共享平台

环境和硬件准备

  • python 3.8及以上版本

  • pytorch 1.12及以上版本,推荐2.0及以上版本

  • 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)

  • 运行BF16或FP16模型需要多卡至少144GB显存(例如2xA100-80G或5xV100-32G)

  • 运行Int4模型至少需要48GB显存(例如1xA100-80G或2xV100-32G)

部署

下载项目或者用git命令下去项目,解压后。

项目地址:https://github.com/QwenLM/Qwen

如果不用 docker,满足上述要求,安装依赖。

pip install -r requirements.txt

如果您的设备支持fp16或bf16,我们建议安装flash-attention(我们现在支持flash Attention 2。)以获得更高的效率和更低的内存占用。(flash-attention是可选的,项目无需安装即可正常运行

git clone https://github.com/Dao-AILab/flash-attention
cd flash-attention && pip install .# Below are optional. Installing them might be slow.# pip install csrc/layer_norm# If the version of flash-attn is higher than 2.1.1, the following is not needed.# pip install csrc/rotary

Transformers

from transformers import AutoModelForCausalLM, AutoTokenizerfrom transformers.generation import GenerationConfig
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-1_8B-Chat", trust_remote_code=True)
# Only Qwen-72B-Chat and Qwen-1_8B-Chat has system prompt enhancement now.model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", device_map="auto", trust_remote_code=True).eval()# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-72B-Chat", device_map="auto", trust_remote_code=True).eval()
response, _ = model.chat(tokenizer, "你好呀", history=None, system="请用二次元可爱语气和我说话")print(response)# 你好啊!我是一只可爱的二次元猫咪哦,不知道你有什么问题需要我帮忙解答吗?
response, _ = model.chat(tokenizer, "My colleague works diligently", history=None, system="You will write beautiful compliments according to needs")print(response)# Your colleague is an outstanding worker! Their dedication and hard work are truly inspiring. They always go above and beyond to ensure that their tasks are completed on time and to the highest standard. I am lucky to have them as a colleague, and I know I can count on them to handle any challenge that comes their way.

Web UI

pip install -r requirements_web_demo.txt
python web_demo.py
### 开源大型模型的选择 对于私有化部署而言,选择合适的开源大型模型至关重要。考虑到性能、可扩展性和安全性等因素,一些特定的模型更适合此类应用场景。 #### 1. LLaMA (Large Language Model Meta AI) LLaMA 是由Meta公司开发的大规模预训练语言模型系列之一[^4]。该模型具备强大的自然语言处理能力,在多个领域展现出卓越的表现。其特点如下: - **灵活性高**:支持多种下游任务定制; - **资源消耗低**:相比其他同类产品,运行所需硬件条件较为宽松; - **社区活跃度好**:拥有广泛的开发者群体和技术支持网络; ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf") model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf") input_text = "Once upon a time" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` #### 2. BLOOM (BigScience Large Open-science Open-access Multilingual) BLOOM是由BigScience项目推出的一个多语种大模型,旨在促进全球范围内的科研合作与发展。它具有以下几个优势[^1]: - **跨文化兼容性强**:能够理解和生成超过46种不同语言的内容; - **数据隐私保护严格**:遵循GDPR等相关法律法规的要求; - **易于集成到现有系统中**:提供了丰富的API接口文档以及详细的安装指南; #### 3. Qwen(通义千问) Qwen是中国阿里巴巴集团旗下的超大规模语言模型家族成员之一。这款模型不仅继承了阿里云多年积累的技术成果,还融合了许多创新性的算法设计思路。主要特性包括但不限于: - **中文场景优化良好**:针对汉语表达习惯进行了专门调整,使得对话更加流畅自然; - **企业级安全防护机制完善**:内置多重加密手段保障敏感信息不被泄露; - **持续更新迭代速度快**:定期发布新版本以修复已知漏洞并引入更多实用功能;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值