K折交叉验证K-CV与StratifiedKFold

1. K折交叉验证

K-fold Cross Validation,记为K-CV

KFold 将所有的样例划分为 k 个组,称为折叠 (fold) ,每组数据都具有相同的大小。每一次分割会将其中的 K-1 组作为训练数据,剩下的一组用作测试数据,一共会分割K次.

比如训练样本有4000个,假设K=4. 那么模型会训练4次,生成4个模型结果。每次训练的数据是3000(即3个4000/4,3=K-1),验证数据是1000(1个4000/4))。如果是lightGBM,那么可以将这4个模型的结果取平均,即为最终结果。

K一般大于等于2,实际操作时一般从3开始取,只有在原始数据集合数据量小的时候才会尝试取2。

K-CV可以有效的避免过拟合与欠拟合的发生,最后得到的结果也比较具有说服性

2.StratifiedKFold

StratifiedKFold: 是KFold()的变种,采用分层分组的形式(有点类似分层抽样), 使每个分组中各类别的比例 同整体数据中各类别的比例尽可能的相同。(它相对于KFold()方法更完善)

oof = np.zeros(train_df.shape[0])
val_aucs = []
test_df[‘prob’] = 0

seeds = [1023]#
for seed in seeds:
skf = StratifiedKFold(n_splits=4, shuffle=True, random_state=seed)
for i, (trn_idx, val_idx) in enumerate(skf.split(train_df, train_df[‘label’])):
print(’--------------------- {} fold ---------------------’.format(i))
print(‘len-trn_idx:’,len(trn_idx))
print(‘len-val_idx:’,len(val_idx))
t = time.time()
trn_x, trn_y = train_df[cols].iloc[trn_idx].reset_index(drop=True), train_df[‘label’].values[trn_idx]
val_x, val_y = train_df[cols].iloc[val_idx].reset_index(drop=True), train_df[‘label’].values[val_idx]

tr_data = lgb.Dataset(trn_x,label=trn_y)
va_data = lgb.Dataset(val_x, label=val_y)
model = lgb.train(
params,
tr_data,
num_boost_round=1000,
valid_sets=[tr_data, va_data],
early_stopping_rounds=50,
feval=tpr_weight,
#feature_name=features,
#categorical_feature=categorical_columns,
verbose_eval=50
)
oof[val_idx] = model.predict(val_x)
test_df[‘prob’] += model.predict(test_df[cols]) / skf.n_splits / len(seeds)
cv_auc = roc_auc_score(train_df[‘label’], oof)
val_aucs.append(cv_auc)
print(’\ncv_auc: ', cv_auc)

print(val_aucs, np.mean(val_aucs))

<think>好的,我现在需要回答用户关于k交叉验证的问题。用户已经提供了三个站内引用,我需要结合这些引用来组织答案。 首先,用户的上一次问题关于CART决策树,而当前问题转向k交叉验证,所以可能需要确保答案的结构清晰,符合用户之前的要求,比如使用中文、数学公式用$...$,独立公式用$$...$$,以及生成相关问题。同时要注意引用标记。 用户给出的引用中,引用[1]解释了K交叉验证的特殊情况是留一法,但指出实际工作中可能不常用,尤其是数据量大时。引用[2]提供了KFold的代码示例,说明如何划分数据集。引用[3]提到k交叉验证的参数管理和GPU使用,可能涉及实现细节。 我需要先定义k交叉验证,然后说明其步骤,可能引用中的内容,比如分成k个子集,k-1训练,1个验证,循环k次。要提到它的优点,比如减少过拟合,提高模型泛化能力,同时结合引用[1]提到的留一法作为特例,但指出其计算成本高,尤其在数据量大时。 然后,需要讨论k的取值影响,比如k=5或10的常见选择,以及如何平衡偏差和方差。接下来,可以结合引用[2]中的代码示例,说明如何在scikit-learn中使用KFold,展示具体实现步骤,比如导入KFold,设置n_splits,分割数据等。 还要提到k交叉验证的变体,如分层KStratifiedKFold)和组K(GroupKFold),这些在引用[2]中有提及,适用于分类问题和保持组结构的情况。最后,结合引用[1]和实际应用,指出虽然理论上有优势,但需要考虑计算资源,特别是在大数据场景下可能需要调整k值。 在数学公式部分,可能需要给出交叉验证误差的计算公式,比如平均误差。同时,确保使用正确的LaTeX格式,如$$...$$。最后生成相关问题,参考用户之前的示例,比如k的选取、留一法的比较、变体区别等。 检查是否有遗漏的引用内容,比如引用[3]提到的参数管理和GPU使用,可能需要在实现注意事项中提及,但用户主要询问的是概念,所以可能简要带过。确保回答结构符合用户要求的层次,分点清晰,代码块正确,引用标记正确放置。</think>### K交叉验证详解(基于站内知识整合) #### 一、核心定义 **K交叉验证**(K-Fold Cross Validation)是机器学习中**评估模型泛化能力**的核心方法,其定义为: $$ CV_{error} = \frac{1}{k}\sum_{i=1}^k Error_i $$ 其中$k$为数,$Error_i$表示第$i$验证集的评估误差(如引用[1]中描述的误差计算逻辑) #### 二、算法流程 ##### 1. 标准步骤 ```mermaid graph LR A[原始数据集] --> B[随机划分k个互斥子集] B --> C{循环k次} C --> D[第i次取第i个子集作为验证集] D --> E[剩余k-1个子集合并为训练集] E --> F[训练模型并计算验证误差] F --> C C --> G[输出k次误差平均值] ``` ##### 2. 关键特性 - **数据利用率**:每个样本都参且仅参1次验证(对比留出法的数据浪费问题) - **误差稳定性**:通过多轮平均降低随机划分带来的波动(如引用[2]中KFold的实现方式) #### 三、scikit-learn实现示例 ```python from sklearn.model_selection import KFold import numpy as np # 模拟数据集(6个样本) X = np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]) y = np.array([0,1,0,1,0,1]) # 4交叉验证(如引用[2]代码示例) kf = KFold(n_splits=4) for train_index, test_index in kf.split(X): print(f"训练集索引:{train_index} 测试集索引:{test_index}") X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] ``` #### 四、关键参数解析 | 参数 | 作用域 | 典型取值 | 注意事项 | |-------------|--------------------|----------|--------------------------| | `n_splits` | 数控制 | 5/10 | 数据量>10k时建议≤5(如引用[1]的10w数据警告) | | `shuffle` | 数据打乱 | True | 时间序列数据需禁用 | | `random_state` | 随机种子 | 42 | 保证实验可复现性 | #### 五、方法对比 | 验证方法 | 数据利用率 | 计算成本 | 适用场景 | |---------------|------------|----------|--------------------------| | 留出法 | 低 | 低 | 超大数据集初步验证 | | **K交叉验证** | 高 | 中 | 中小数据集精细评估 | | 留一法(LOO) | 极高 | 极高 | 极小数据集(如引用[1]中N=100时) | #### 六、工程实践要点 1. **分层抽样优化**: - 使用`StratifiedKFold`保持类别分布(如引用[2]提到的变体) - 特别适用于分类任务中的不平衡数据集 2. **计算资源管理**: - GPU加速时注意内存分配(如引用[3]中GPU使用提示) - 并行化策略:同时训练不同的模型 3. **结果解读准则**: - 关注**标准差**:若标准差>均值10%,说明模型稳定性不足 - 对比**训练误差vs验证误差**:差值>20%提示过拟合 [^1]: 交叉验证计算成本说明引自站内《交叉验证-原理小结》 [^2]: KFold实现方法引自站内《特征工程数据集划分方法》 [^3]: GPU加速策略参考站内《k交叉验证参数管理》 ### 相关问题 1. 如何选择最优的k值?k=5和k=10有什么本质区别? 2. K交叉验证留一法(LOO)在什么场景下会失效? 3. 分层K交叉验证(StratifiedKFold)解决了哪些具体问题?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI强仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值