WAV2VEC:语音识别非监督预训练模型

本文介绍了WAV2VEC,一种用于语音识别的非监督预训练模型,对比DeepSpeech2,它显著降低了WER至2.43%,展示了在该领域的创新突破。模型结构包括encoder和context网络,以及后续的大型模型增强和目标函数。实验使用wav2letter++进行模型训练和评估,主要通过context网络输出进行解码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 简介

本文根据2019年《WAV2VEC: UNSUPERVISED PRE-TRAINING FOR SPEECH RECOGNITION》翻译总结的。

在图像、NLP领域,预训练已大放异彩,而语音识别领域尚缺乏。本文提的WAV2VEC就是语音识别方面的非监督预训练模型,也如论文题目所说。相比Deep Speech 2,WER(word error rate)从3.1%降到2.43%。

2 预训练方法

2.1 模型

原始的语音样本x;
特征表达z;
在这里插入图片描述

如上图所示,原始的语音应作用到两个网络,其中encoder 网络将x变成z,context 网络将z变成c。

在这里插入图片描述
在这里插入图片描述

encoder 网络和context 网络的层中都包括一个512 channels的causal convolution、一个group normalization layer 和一个 ReLU nonlinearity。

2.2 wav2vec large

encoder使用了两个附加的linear transformations;
context网络增加到12层,增加 kernel sizes (2, 3, . . . , 13).
也使用了skip connection,帮助收敛。
最后的context网络层,感受野增加到810毫秒。

2.3 目标函数

在这里插入图片描述

2.4 输入声学模型

在训练后,我们将c_i代替log-mel filterbank features输入到声学模型。

3 实验

我们使用wav2letter++工具包训练和评估声学模型。

3.1 Decoding

我们从context网络c输出(或者log-mel filterbank)来decode 单词序列y:
在这里插入图片描述

4 结果

从下表可以看出来,最好的wav2vec large相比Deep Speech 2,WER(word error rate)从3.1%降到2.43%。

在这里插入图片描述

### 无监督预训练模型 wav2vec 的介绍 wav2vec 是一种针对语音信号设计的无监督预训练模型,旨在通过学习音频数据中的潜在表示来提升下游任务的表现。该模型最初由 Facebook AI Research 提出,并在多个语音识别任务上取得了显著的效果[^1]。 --- ### wav2Vec 的工作原理 wav2vec 的核心思想是利用对比学习(Contrastive Learning)技术,在未标注的大量语音数据中提取有用的特征表示。具体来说: - **输入处理**:原始音频波形被直接作为输入,而不是传统的梅尔频谱图或其他手工特征。这种做法保留了更多的时间序列信息。 - **上下文编码器(Context Network)**:通过对连续帧的时间依赖关系建模,捕捉更高级别的语义信息。这一部分通常采用卷积神经网络(CNN)结构实现[^3]。 - **量化离散化**:为了减少计算复杂度并增强泛化能力,wav2vec 将连续向量映射到一组有限数量的离散码本(Codebook)。这些离散化的表征随后用于后续的任务优化过程[^2]。 - **负采样策略**:引入噪声对比估计 (Noise Contrastive Estimation, NCE),区分真实样本与其随机生成的虚假版本之间的差异,从而促使模型学会辨别有意义的声音模式。 --- ### 主要特点 #### 1. **端到端架构** - 不需要任何手动定义的功能提取步骤,可以直接作用于原始声学信号之上。 #### 2. **强大的迁移性能** - 经过大规模无标签数据集上的充分训练之后,所得到的知识可以很好地迁移到其他特定领域或者少量标记样本条件下完成分类、转录等工作流当中去。 #### 3. **高效的资源利用率** - 使用变分自动编码器(VAE)-like机制来进行潜空间压缩操作的同时保持较高的重建质量;另外还采用了多尺度熵正则项进一步鼓励多样性表达形式出现。 #### 4. **改进版 Wav2Vec 2.0** - 后续发布的升级版本——Wav2Vec 2.0,则完全摒弃掉了先前存在的预测目标设定方式,取而代之的是基于掩蔽语言模型(MLM)框架下的新范式。它不仅简化了整个流程而且还大幅提高了最终成果的质量水平。 ```python import torch from fairseq.models.wav2vec import Wav2VecModel # 加载预训练模型 cp = torch.load('/path/to/wav2vec.pt') model = Wav2VecModel.build_model(cp['args'], task=None) model.load_state_dict(cp['model']) model.eval() ``` 上述代码展示了如何加载官方提供的 WAV2VEC 预训练权重文件,并将其实例化为可用对象以便执行推理等相关操作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值