TensorFlow
沫尘雪痕
这个作者很懒,什么都没留下…
展开
-
TensorFlow学习笔记(一):基本概念
Tensorflow用张量这种数据结构来表示所有的数据。用一阶张量来表示向量,如:v = [1.2, 2.3, 3.5] ,如二阶张量表示矩阵,如:m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],可以看成是方括号嵌套的层数。1、编辑器编写tensorflow代码,实际上就是编写py文件,最好找一个好用的编辑器,如果你用vim或gedit比较顺手,那也可以的啦。我转载 2017-05-25 19:01:53 · 1269 阅读 · 0 评论 -
TensorFlow学习笔记(十): CIFAR-10
1. CIFAR-10Cifar-10 是由 Hinton 的两个大弟子 Alex Krizhevsky、Ilya Sutskever 收集的一个用于普适物体识别的数据集。Cifar 是加拿大政府牵头投资的一个先进科学项目研究所。Hinton、Bengio和他的学生在2004年拿到了 Cifar 投资的少量资金,建立了神经计算和自适应感知项目。这个项目结集了不少计算机科学家、生物学家、电气转载 2017-05-26 20:33:27 · 66884 阅读 · 7 评论 -
TensorFlow学习笔记(八): Google 的开源技术protobuf 简介
★protobuf是啥玩意儿? 为了照顾从没听说过的同学,照例先来扫盲一把。 首先,protobuf是一个开源 项 目(官方站点在“这里 ”),而且是后台很硬的开源项目。网上现有的大部分(至少80%)开源项目,要么是某人单干、要么是几个闲杂人等合伙搞。而protobuf则不然,它是 鼎鼎大名的Google公司开发出来,并且在Google内部久经考验的一个东东。由此可见,它的作者绝非一般转载 2017-05-26 12:12:04 · 4675 阅读 · 1 评论 -
TensorFlow学习笔记(七):TensorBoard可视化助手
TensorBoard可以将训练过程中的各种绘制数据展示出来,包括标量(scalars),图片(images),音频(Audio),计算图(graph),数据分布,直方图(histograms)和嵌入式向量。使用TensorBoard展示数据,需要在执行Tensorflow就算图的过程中,将各种类型的数据汇总并记录到日志文件中。然后使用TensorBoard读取这些日志文件,解析数据并生产数据转载 2017-05-25 20:16:21 · 21240 阅读 · 0 评论 -
TensorFlow学习笔记(六):如何理解dropout?
dropout是指在深度学习网络的训练过程中,对于神经网络单元,按照一定的概率将其暂时从网络中丢弃。注意是暂时,对于随机梯度下降来说,由于是随机丢弃,故而每一个mini-batch都在训练不同的网络。dropout是CNN中防止过拟合提高效果的一个大杀器,但对于其为何有效,却众说纷纭。在下读到两篇代表性的论文,代表两种不同的观点,特此分享给大家。组合派参考文献中第一篇中的观点,Hint转载 2017-05-25 19:35:24 · 3547 阅读 · 0 评论 -
TensorFlow学习笔记(五):tf.reshape用法
tf.reshape(tensor,shape, name=None) 函数的作用是将tensor变换为参数shape的形式。 其中shape为一个列表形式,特殊的一点是列表中可以存在-1。-1代表的含义是不用我们自己指定这一维的大小,函数会自动计算,但列表中只能存在一个-1。(当然如果存在多个-1,就是一个存在多解的方程了)好了我想说的重点还有一个就是根据shape如何变换矩阵。其实转载 2017-05-25 19:33:15 · 27093 阅读 · 1 评论 -
TensorFlow学习笔记(四):tf.nn.max_pool如何实现池化操作?
max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似tf.nn.max_pool(value,ksize, strides, padding, name=None)参数是四个,和卷积很类似:第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这转载 2017-05-25 19:26:14 · 3147 阅读 · 1 评论 -
TensorFlow学习笔记(三):tf.nn.conv2d是怎样实现卷积的?
tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要tf.nn.conv2d(input,filter, strides, padding, use_cudnn_on_gpu=None, name=None)除去name参数用以指定该操作的name,与方法有关的一共五个参数:第一个参数i转载 2017-05-25 19:23:12 · 2702 阅读 · 1 评论 -
TensorFlow学习笔记(二):实例数据下载
一、mnist数据深度学习的入门实例,一般就是mnist手写数字分类识别,因此我们应该先下载这个数据集。tensorflow提供一个input_data.py文件,专门用于下载mnist数据,我们直接调用就可以了,代码如下:import tensorflow.examples.tutorials.mnist.input_data as input_datamnist =input_转载 2017-05-25 19:16:35 · 1783 阅读 · 0 评论 -
TensorFlow学习笔记(九):CIFAR-10训练例子报错解决
以下报错主要是由于TensorFlow升级1.0后与以前代码不兼容所致。1.AttributeError: 'module' object has noattribute 'random_crop'解决方案:将distorted_image= tf.image.random_crop(reshaped_image, [height, width])改为:di转载 2017-05-26 16:47:55 · 29518 阅读 · 12 评论