TensorFlow学习笔记(四):tf.nn.max_pool如何实现池化操作?

max poolingCNN当中的最大值池化操作,其实用法和卷积很类似

tf.nn.max_pool(value,ksize, strides, padding, name=None)

参数是四个,和卷积很类似:

第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape

第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batchchannels上做池化,所以这两个维度设为了1

第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride,1]

第四个参数padding:和卷积类似,可以取'VALID' 或者'SAME'

返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式


示例源码:

假设有这样一张图,双通道

第一个通道:


第二个通道:


用程序去做最大值池化:

import tensorflow as tf

 

a=tf.constant([

        [[1.0,2.0,3.0,4.0],

       [5.0,6.0,7.0,8.0],

       [8.0,7.0,6.0,5.0],

       [4.0,3.0,2.0,1.0]],

       [[4.0,3.0,2.0,1.0],

        [8.0,7.0,6.0,5.0],

        [1.0,2.0,3.0,4.0],

        [5.0,6.0,7.0,8.0]]

    ])

 

a=tf.reshape(a,[1,4,4,2])

 

pooling=tf.nn.max_pool(a,[1,2,2,1],[1,1,1,1],padding='VALID')

with tf.Session() as sess:

   print("image:")

   image=sess.run(a)

    print (image)

   print("reslut:")

   result=sess.run(pooling)

    print (result)

这里步长为1,窗口大小2×2,输出结果:

image:

[[[[ 1.  2.]

   [ 3.  4.]

   [ 5.  6.]

   [ 7.  8.]]

 

  [[ 8.  7.]

   [ 6.  5.]

   [ 4.  3.]

   [ 2.  1.]]

 

  [[ 4.  3.]

   [ 2.  1.]

   [ 8.  7.]

   [ 6.  5.]]

 

  [[ 1.  2.]

   [ 3.  4.]

   [ 5.  6.]

   [ 7.  8.]]]]

reslut:

[[[[ 8.  7.]

   [ 6.  6.]

   [ 7.  8.]]

 

  [[ 8.  7.]

   [ 8.  7.]

   [ 8.  7.]]

 

  [[ 4.  4.]

   [ 8.  7.]

   [ 8.  8.]]]]

池化后的图就是:



证明了程序的结果是正确的。

 

我们还可以改变步长

pooling=tf.nn.max_pool(a,[1,2,2,1],[1,2,2,1],padding='VALID')

最后的result就变成:

reslut:

[[[[ 8.  7.]

   [ 7.  8.]]

 

  [[ 4.  4.]

   [ 8.  8.]]]]

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值