【分类指标(一)】如何理解混淆矩阵 | 准确率 | 精确率 | 召回率 | F值等

本文详细介绍了混淆矩阵及其分类统计指标,如True Positive Rate (TPR) 和 False Positive Rate (FPR),并探讨了它们在计算AUROC和AUPR中的作用。此外,还涵盖了准确率、精确率、召回率和F1值等关键评估指标,并提供了Python代码示例。最后,讨论了如何理解并绘制AUROC和AUPR曲线,以深入评估模型性能。

1 混淆矩阵定义( C o n f u s i o n   M a t r i x \rm{}Confusion~Matrix Confusion Matrix)

  在分类统计指标的学习过程中,对混淆矩阵的学习是绕不过的一环。只有理解好了混淆矩阵才能对 F p r 、 T p r 、 R e c a l l 、 P r e c i s i o n 、 A U R O C 、 A P U R \rm{}Fpr、Tpr、Recall、Precision、AUROC、APUR FprTprRecallPrecisionAUROCAPUR等概念有更深刻的认识。混淆矩阵是通过模型在测试集上的预测来计算的,通过观察混淆矩阵可以更好的理解模型的优缺点。

  如上图所示,列表示 A c t u a l l y   P o s i t i v e   a n d   A c t u a l l y   N e g a t i v e \rm{}Actually~Positive~ and~Actually ~Negative Actually Positive and Actually Negative指的是数据集中的真实标签( g r o u n d   t r u t h   l a b e l s \rm{ground~truth~labels} ground truth labels),行表示 A c t u a l l y   P o s i t i v e   a n d   A c t u a l l y   N e g a t i v e \rm{}Actually~ Positive~ and ~Actually~Negative Actually Positive and Actually Negative,指的是模型预测的结果,即模型认为标签是什么。

2 统计指标

混淆矩阵Python代码

from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(y_test, y_predict)

2.1 混淆矩阵的分类统计指标

  • T r u e   P o s i t i v e s   ( T P s ) : \rm{True~Positives~(TPs):} True Positives (TPs): 模型正确分类正样本的数量。
  • T r u e   N e g a t i v e s   ( T N s ) \rm{True~Negatives ~(TNs)} True Negatives (TNs): 模型正确分类负样本的数量。
  • F a l s e   P o s i t i v e s   ( F P s ) \rm{False~Positives ~(FPs)} False Positives (FPs): 模型将负样本错误的预测为正样本的数量。
  • F a l s e   N e g a t i v e s   ( F N s ) \rm{False~ Negatives~ (FNs)} Fals
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值