目录
- 1 混淆矩阵定义( C o n f u s i o n M a t r i x \rm{}Confusion~Matrix Confusion Matrix)
- 2 统计指标
- 3 P y t h o n \rm{}Python Python计算 A U R O C \rm{}AUROC AUROC和 A U P R \rm{}AUPR AUPR值
- 4 P y t h o n \rm{}Python Python绘制 A U R O C \rm{}AUROC AUROC和 A U P R \rm{}AUPR AUPR曲线
- 5 深入理解 A U R O C \rm{}AUROC AUROC和 A U P R \rm{}AUPR AUPR曲线
- 6 参考文献
1 混淆矩阵定义( C o n f u s i o n M a t r i x \rm{}Confusion~Matrix Confusion Matrix)
在分类统计指标的学习过程中,对混淆矩阵的学习是绕不过的一环。只有理解好了混淆矩阵才能对 F p r 、 T p r 、 R e c a l l 、 P r e c i s i o n 、 A U R O C 、 A P U R \rm{}Fpr、Tpr、Recall、Precision、AUROC、APUR Fpr、Tpr、Recall、Precision、AUROC、APUR等概念有更深刻的认识。混淆矩阵是通过模型在测试集上的预测来计算的,通过观察混淆矩阵可以更好的理解模型的优缺点。

如上图所示,列表示 A c t u a l l y P o s i t i v e a n d A c t u a l l y N e g a t i v e \rm{}Actually~Positive~ and~Actually ~Negative Actually Positive and Actually Negative指的是数据集中的真实标签( g r o u n d t r u t h l a b e l s \rm{ground~truth~labels} ground truth labels),行表示 A c t u a l l y P o s i t i v e a n d A c t u a l l y N e g a t i v e \rm{}Actually~ Positive~ and ~Actually~Negative Actually Positive and Actually Negative,指的是模型预测的结果,即模型认为标签是什么。
2 统计指标
混淆矩阵Python代码
from sklearn.metrics import confusion_matrix
confusion_matrix = confusion_matrix(y_test, y_predict)
2.1 混淆矩阵的分类统计指标
- T r u e P o s i t i v e s ( T P s ) : \rm{True~Positives~(TPs):} True Positives (TPs): 模型正确分类正样本的数量。
- T r u e N e g a t i v e s ( T N s ) \rm{True~Negatives ~(TNs)} True Negatives (TNs): 模型正确分类负样本的数量。
- F a l s e P o s i t i v e s ( F P s ) \rm{False~Positives ~(FPs)} False Positives (FPs): 模型将负样本错误的预测为正样本的数量。
- F a l s e N e g a t i v e s ( F N s ) \rm{False~ Negatives~ (FNs)} Fals

本文详细介绍了混淆矩阵及其分类统计指标,如True Positive Rate (TPR) 和 False Positive Rate (FPR),并探讨了它们在计算AUROC和AUPR中的作用。此外,还涵盖了准确率、精确率、召回率和F1值等关键评估指标,并提供了Python代码示例。最后,讨论了如何理解并绘制AUROC和AUPR曲线,以深入评估模型性能。
最低0.47元/天 解锁文章
4383

被折叠的 条评论
为什么被折叠?



