paper:
CLOCs: Camera-LiDAR Object Candidates Fusionfor 3D Object Detection
https://arxiv.org/abs/2009.00784
github:https://github.com/pangsu0613/CLOCs
简介
在3D目标检测领域,目前的fusion普遍都是deep fusion,效果不如纯lidar的方法。一个原因是由于camera和lidar两个传感器对物理世界的描述属于不同的视角(FV vs BEV)、不同的表征方式(rgb VS xyzi)、不同的存储方式(规则uv VS 无序),融合特征是否能很好的表征目标这是个问题;另外就是融合的算法在数据增强方面也有限制,不太好做数据增强。
在决策层面的融合相对简单很多,不需要考虑在信息层面的融合和互补,对结果做决策上的选择融合。本文的方法是采用了后融合的路径,使用任何一对预先训练好的2D和3D检测器,因此,可以很容易地被任何相关的已经优化的检测方法所使用。