CLOCs网络结构

paper:
CLOCs: Camera-LiDAR Object Candidates Fusionfor 3D Object Detection
https://arxiv.org/abs/2009.00784

github:https://github.com/pangsu0613/CLOCs

简介

在3D目标检测领域,目前的fusion普遍都是deep fusion,效果不如纯lidar的方法。一个原因是由于camera和lidar两个传感器对物理世界的描述属于不同的视角(FV vs BEV)、不同的表征方式(rgb VS xyzi)、不同的存储方式(规则uv VS 无序),融合特征是否能很好的表征目标这是个问题;另外就是融合的算法在数据增强方面也有限制,不太好做数据增强。

在决策层面的融合相对简单很多,不需要考虑在信息层面的融合和互补,对结果做决策上的选择融合。本文的方法是采用了后融合的路径,使用任何一对预先训练好的2D和3D检测器,因此,可以很容易地被任何相关的已经优化的检测方法所使用。

网络架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JoannaJuanCV

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值