keras中激活函数的使用

两种方式:

一、通过keras封装的网络层中的activation参数指定:

例如,下面的卷积层中的指定的激活函数为ReLU函数:

from keras.model import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D

model = Sequential()
model.add(Conv2D(
        kernel_size=(9,9),
        activation="relu",
        filters=48,
        strides=(4,4),
        input_shape = input_shape))

model.add(MaxPooling2D((3,3), strides=(2,2), padding='same'))

model.add(Conv2D(
        strides=(1,1),
        kernel_size=(3,3),
        activation="relu",
        filters=128))

model.add(Conv2D(
        strides=(1,1),
        kernel_size=(3,3),
        activation="relu",
        filters=128))

model.add(MaxPooling2D((3,3), strides=(2,2), padding='same'))

二、通过Activation激活层单独封装:

from keras.layers import Activation, Dense

model.add(Dense(64))
model.add(Activation('sigmoid'))

等价于: 

model.add(Dense(64, activation='sigmoid'))

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JoannaJuanCV

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值