llamaindex实战-本地模型和Pandas数据对话

llamaindex实战-本地模型和Pandas数据对话

概述

本文介绍如何使用llamaindex的 PandasQueryEngine引擎,通过使LLM将自然语言转换为 Pandas python 代码。PandasQueryEngine 的输入是 Pandas 数据帧,输出是响应。 LLM 推断要执行的dataframe操作以检索结果。

可以通过python接口把不同数据源的数据读取成Pandas结构中。

注意:该引擎目前还处于实验阶段,有时候会出现语法错误。

实现步骤

(1)准备panda数据集;

(2)创建LLM大模型对象。这里可以使用不同大模型。我这里使用的是本地部署的Ollama中的模型。

(3)创建PandasQueryEngine查询对象;

(4)使用查询引擎对象来查询数据;

完整代码

import logging
import sys
import pandas as pd
from llama_index.experimental.<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值