LangChain 81 LangGraph 从入门到精通三

本文系列详细介绍了LangChain的各个方面,包括LangChain表达式语言的多个特性(如链透传参数、代码执行、审查机制等),以及如何创建和定制聊天代理执行器、多智能体协作、评估方法和异步处理。教程涵盖了实战示例和高级用法,适合对大语言模型和LangChain技术感兴趣的开发者和研究者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LangChain系列文章

  1. LangChain 60 深入理解LangChain 表达式语言23 multiple chains链透传参数 LangChain Expression Language (LCEL)
  2. LangChain 61 深入理解LangChain 表达式语言24 multiple chains链透传参数 LangChain Expression Language (LCEL)
  3. LangChain 62 深入理解LangChain 表达式语言25 agents代理 LangChain Expression Language (LCEL)
  4. LangChain 63 深入理解LangChain 表达式语言26 生成代码code并执行 LangChain Expression Language (LCEL)
  5. LangChain 64 深入理解LangChain 表达式语言27 添加审查 Moderation LangChain Expression Language (LCEL)
  6. LangChain 65 深入理解LangChain 表达式语言28 余弦相似度Router Moderation LangChain Expression Language (LCEL)
  7. LangChain 66 深入理解LangChain 表达式语言29 管理prompt提示窗口大小 LangChain Expression Language (LCEL)
  8. LangChain 67 深入理解LangChain 表达式语言30 调用tools搜索引擎 LangChain Expression Language (LCEL)
  9. LangChain 68 LLM Deployment大语言模型部署方案
  10. LangChain 69 向量数据库Pinecone入门
  11. LangChain 70 Evaluation 评估、衡量在多样化数据上的性能和完整性
  12. LangChain 71 字符串评估器String Evaluation衡量在多样化数据上的性能和完整性
  13. LangChain 72 reference改变结果 字符串评估器String Evaluation
  14. LangChain 73 给结果和参考评分 Scoring Evaluator
  15. LangChain 74 有用的或者有害的helpful or harmful Scoring Evaluator
  16. LangChain 75 打造你自己的OpenAI + LangChain网页应用
  17. LangChain 76 LangSmith 从入门到精通一
  18. LangChain 77 LangSmith 从入门到精通二
  19. LangChain 78 LangSmith 从入门到精通三
  20. LangChain 79 LangGraph 从入门到精通一
  21. LangChain 80 LangGraph 从入门到精通二

在这里插入图片描述

1. ChatAgentExecutor:带有函数调用的代理执行器

这个代理执行器将消息列表作为输入,并输出消息列表。所有代理状态都表示为消息列表。这特别使用OpenAI函数调用。这是推荐的代理执行器,适用于支持函数调用的新型基于聊天的模型。

我们还有很多示例,突出显示如何稍微修改基本的聊天代理执行器。所有这些都是getting started notebook 基于入门笔记本构建的,因此建议您首先从那里开始。

2. AgentExecutor

此代理执行程序使用现有的LangChain代理。

我们还有很多示例,重点介绍如何轻微修改基本的聊天代理执行程序。所有这些都是 getting started notebook 基于入门笔记本构建的,因此建议您首先从那里开始。

3. 多智能体示例 Multi-agent Examples

4. 通过模拟进行聊天机器人评估 Chatbot Evaluation via Simulation

在多轮对话中经常很难评估聊天机器人。一种方法是使用模拟来实现这一点。

5. 异步 Async

如果您在异步工作流中运行LangGraph,您可能希望默认创建节点为异步。有关如何执行此操作的详细步骤,请参阅此文档

6. 流式标记 Streaming Tokens

有时语言模型需要一段时间才能做出响应,您可能希望将标记流式传输给最终用户。有关如何执行此操作的指南,请参阅此文档

代码

https://github.com/zgpeace/pets-name-langchain/tree/develop

参考

https://python.langchain.com/docs/langsmith/walkthrough

### 关于 JavaScript 版本的 LangChainLangGraph #### LangChain 是什么? LangChain 是一种用于构建基于大型语言模型 (LLM) 应用程序的框架。它提供了一系列模块化工具,使得开发者能够更轻松地设计复杂的对话系统和其他自然语言处理应用程序[^1]。 #### JavaScript 版本的 LangChain 尽管主要文档和教程可能集中于 Python 实现,但 LangChain 社区也支持 JavaScript/TypeScript 用户群体。以下是关于 JavaScript 版本的关键点: - **安装与初始化** 可以通过 npm 或 yarn 安装 `langchain` 包来使用其功能。例如: ```javascript npm install langchain ``` - **核心模块的支持情况** 虽然大部分功能在 Python 中实现得更为成熟,但在 JavaScript 中同样提供了以下模块的功能接口: - Model I/O:允许定义输入输出模式并集成不同的 LLM 提供商。 - Retrieval:支持向量数据库检索操作。 - Agents & Chains:部分预设链式逻辑已移植到 JS 平台。 - Memory:会话记忆管理机制可用。 - Callbacks:事件监听器可用于调试或扩展行为。 - **局限性** 需要注意的是,某些高级特性如 LCEL(LangChain 表达式语言)、LangServe、以及特定实验性质组件,在当前阶段未必完全适配前端环境或者 Node.js 生态系统。 #### LangGraph 的概述及其 JavaScript 支持 LangGraph 主要作为图结构数据表示的一部分存在,旨在增强知识图谱的应用场景。对于 JavaScript 开发者而言: - 如果计划利用图形算法,则需确认目标库是否已被迁移到 TypeScript 上; - 目前官方并未单独强调针对此子项目的跨平台兼容进度详情。 因此建议关注最新发布说明页面获取最精确的消息源地址。 ```javascript // 示例代码展示如何加载基础配置文件 const { initializeAgentExecutor } = require("langchain"); async function run() { const model = ...; // 初始化您的大模型实例 const tools = [...]; // 添加所需的工具列表 const executor = await initializeAgentExecutor(tools, model); } run(); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值