ChatGLM-3微调实战中的LoRA(Local Response Alignment)技术全解如下:
一、引言
ChatGLM-3作为一种强大的预训练语言模型,在多个领域展现出其出色的性能。然而,为了使ChatGLM-3更好地适应特定领域的需求,往往需要对模型进行微调。LoRA技术就是一种在模型微调中引入局部响应可塑性的方法,它在保持模型全局一致性的同时,允许模型在局部上根据新的数据分布进行调整。
二、LoRA技术原理
LoRA技术通过引入一个可学习的低秩分解矩阵,对原始模型的权重进行更新。具体来说,LoRA将模型的权重矩阵W分解为两个低秩矩阵A和B的乘积,即W = W_0 + AB,其中W_0是原始模型的权重矩阵,A和B是训练过程中需要学习的低秩矩阵。通过优化A和B,可以在保持模型全局结构不变的情况下,对模型的局部输出进行微调。
三、ChatGLM-3结合LoRA进行微调
- 准备数据:首先,需要准备一组用于微调的特定任务的数据。这些数据应该涵盖该任务的各种情况,并且应该是高质量的。
- 初始化模型:将ChatGLM-3的参数进行初始化。可以使用零初始化或使用预训练模型的参数进行初始化。
- 添加LoRA层:在ChatGLM-3模型的顶部添加一个LoRA层。这个层的作用是实现局部响应可塑性,通过优化该层的参数A和B来对模型的输出进行微调。
- 微调模型:使用准备好的数据集进行微调。在每个梯度更新步骤中,首先通过LoRA层对模型的输出进行局部响应调整,然后再进行标准的梯度更新。在训练过程中,需要设置合适的学习率、批量大小等超参数,以平衡模型的收敛速度和性能。
- 评估与调优:在模型训练完成后,需要对模型进行评