计算机视觉的研究方向、发展历程、发展前景介绍

  以下将分别从图像分类、目标检测、语义分割、图像分割(此处应主要指实例分割)四个方面,为你介绍研究生人工智能计算机视觉领域的应用方向、发展历程以及发展前景。

1.图像分类

应用方向

  安防监控:在公共场所、交通路口等场景,对监控视频中的图像进行分类,如区分行人、车辆、动物等,有助于及时发现异常情况。
  医疗诊断:对医学影像(如 X 光、CT、MRI 等)进行分类,辅助医生诊断疾病,例如判断肺部影像中是否存在结节以及结节的良恶性。
  农业领域:对农作物图像进行分类,识别不同的作物品种、判断作物的生长状态(如健康、病虫害等)。

发展历程

  早期阶段:最初使用手工特征(如 SIFT、HOG 等)结合传统机器学习算法(如 SVM、决策树等)进行图像分类。这些方法依赖于人工设计的特征,对图像的表示能力有限。
  深度学习阶段:2012AlexNetImageNet 图像分类竞赛中取得了巨大成功,标志着深度学习在图像分类领域的崛起。随后,一系列更强大的卷积神经网络(CNN)架构如 VGG、GoogLeNet、ResNet 等相继提出,不断刷新图像分类的准确率记录。

发展前景

  图像分类技术已经相对成熟,但在一些特定领域仍有很大的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值