以下将分别从图像分类、目标检测、语义分割、图像分割(此处应主要指实例分割)四个方面,为你介绍研究生人工智能计算机视觉领域的应用方向、发展历程以及发展前景。
1.图像分类
应用方向
安防监控:在公共场所、交通路口等场景,对监控视频中的图像进行分类,如区分行人、车辆、动物等,有助于及时发现异常情况。
医疗诊断:对医学影像(如 X 光、CT、MRI
等)进行分类,辅助医生诊断疾病,例如判断肺部影像中是否存在结节以及结节的良恶性。
农业领域:对农作物图像进行分类,识别不同的作物品种、判断作物的生长状态(如健康、病虫害等)。
发展历程
早期阶段:最初使用手工特征(如 SIFT、HOG
等)结合传统机器学习算法(如 SVM
、决策树等)进行图像分类。这些方法依赖于人工设计的特征,对图像的表示能力有限。
深度学习阶段:2012
年 AlexNet
在 ImageNet
图像分类竞赛中取得了巨大成功,标志着深度学习在图像分类领域的崛起。随后,一系列更强大的卷积神经网络(CNN)
架构如 VGG、GoogLeNet、ResNet
等相继提出,不断刷新图像分类的准确率记录。
发展前景
图像分类技术已经相对成熟,但在一些特定领域仍有很大的