线性代数学习笔记五:相似矩阵及二次型

本文详细探讨了线性代数中的核心概念,包括向量的内积、长度和正交性,深入讲解了正交矩阵与正交变换。进一步讨论了方阵的特征值和特征向量,以及它们的性质。接着,文章阐述了相似矩阵的定义,特征值的相互关系,以及对称矩阵的对角化过程。最后,介绍了二次型的概念,如何通过配方法将其化为标准型,并定义和识别正定二次型的方法。
摘要由CSDN通过智能技术生成

参考:《线性代数》同济大学第四版

1. 向量的内积、长度及正交性

    1)向量的内积:定义;性质(4条)

    2)向量的长度:定义;性质(3条)

    3)向量的正交性:定义;规范正交基;施密特正交化;

    4)正交矩阵:定义;方阵A为正交矩阵的充要条件;性质(2条)

    5)正交变换

2. 方阵的特征值与特征向量

    1)定义:方阵的特征值;方阵的对应于特征值的特征向量;方阵的特征方程;

    2)方阵A的特征值r的性质(4条):方阵所有特征值之和等于方阵对角元素之和;所有特征值之积等于方阵的行列式;r*r为A*A的特征值;A可逆,则1/r为A逆矩阵的特征值

    3)定理2:方阵的m个特征值各不相等,则其对应的m个特征向量线性无关

3. 相似矩阵

    1)相似矩阵定义

    2)定理3:n阶矩阵A与B相似,则A与B的特征多项式相同,从而特征值亦相同;推论(A与对角阵相似,则对角阵的对角元素即为A的特征值)

    3)定理4:n阶矩阵A与对角阵相似的充要条件是A有n个线性无关的特征向量;推论(n个特征值互不相等)

4. 对称矩阵的对角化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值