第五章 相似矩阵及二次型

本章主要讨论方阵的特征值与特征向量、方阵的相似对角化和二次型的化简等问题,其中涉及向量的内积、长度及正交等知识,下面先介绍这些知识。——线性代数同济版

  本章主要介绍了特征值、特征向量、对角化以及二次型的计算方法。

8.设 n n n阶矩阵 A , B \bm{A},\bm{B} A,B满足 R ( A ) + R ( B ) < n R(\bm{A})+R(\bm{B})<n R(A)+R(B)<n,证明 A \bm{A} A B \bm{B} B有公共的特征值和公共的特征向量。

  显然 R ( A ) < n R(\bm{A})<n R(A)<n,另一方面, A \bm{A} A不可逆,故 0 0 0 A \bm{A} A的特征值。
  同理, 0 0 0也是 B \bm{B} B的特征值。故此,方程组 { A x = 0 , B x = 0 \begin{cases}\bm{Ax}=\bm{0},\\\bm{Bx}=\bm{0}\end{cases} {Ax=0,Bx=0有非零解。由矩阵的性质知
R ( A T , B T ) ⩽ R ( A T ) + R ( B T ) < n . R(\bm{A}^\mathrm{T},\bm{B}^\mathrm{T})\leqslant R(\bm{A}^\mathrm{T})+R(\bm{B}^\mathrm{T})<n. R(AT,BT)R(AT)+R(BT)<n.
  综上, A \bm{A} A B \bm{B} B有公共的特征向量。(这道题主要利用了矩阵的性质求解

12.已知 3 3 3阶矩阵 A \bm{A} A的特征值为 1 , 2 , 3 1,2,3 1,2,3,求 ∣ A 3 − 5 A 2 + 7 A ∣ |\bm{A}^3-5\bm{A}^2+7\bm{A}| A35A2+7A

  令 φ ( λ ) = λ 3 − 5 λ 2 + 7 λ \varphi(\lambda)=\lambda^3-5\lambda^2+7\lambda φ(λ)=λ35λ2+7λ。因 1 , 2 , 3 1,2,3 1,2,3 A \bm{A} A的特征值,故 φ ( 1 ) = 3 , φ ( 2 ) = 2 , φ ( 3 ) = 3 \varphi(1)=3,\varphi(2)=2,\varphi(3)=3 φ(1)=3,φ(2)=2,φ(3)=3 φ ( A ) = A 3 − 5 A 2 + 7 A \varphi(\bm{A})=\bm{A}^3-5\bm{A}^2+7\bm{A} φ(A)=A35A2+7A的特征值。又: φ ( A ) \varphi(\bm{A}) φ(A) 3 3 3阶方阵,这样 φ ( 1 ) , φ ( 2 ) , φ ( 3 ) \varphi(1),\varphi(2),\varphi(3) φ(1),φ(2),φ(3)便是 φ ( A ) \varphi(\bm{A}) φ(A)的全部特征值。由特征值性质得
d e t ( A ) = φ ( 1 ) φ ( 2 ) φ ( 3 ) = 18 \mathrm{det}(\bm{A})=\varphi(1)\varphi(2)\varphi(3)=18 det(A)=φ(1)φ(2)φ(3)=18
这道题主要利用了矩阵多项式与特征值求解

24.设 a = ( a 1 , a 2 , ⋯   , a n ) T , a 1 ≠ 0 , A = a a T . \bm{a}=(a_1,a_2,\cdots,a_n)^\mathrm{T},a_1\ne0,\bm{A}=\bm{aa}^\mathrm{T}. a=(a1,a2,,an)T,a1=0,A=aaT.

(1)证明 λ = 0 \lambda=0 λ=0 A \bm{A} A n − 1 n-1 n1重特征值;

  首先证明 λ = 0 \lambda=0 λ=0 A \bm{A} A n − 1 n-1 n1重特征值。注意到 A \bm{A} A为对称阵,故 A \bm{A} A可以与对角阵 Λ \bm{\varLambda} Λ相似。显然 R ( A ) = 1 R(\bm{A})=1 R(A)=1,从而 R ( Λ ) = 1 R(\bm{\varLambda})=1 R(Λ)=1,于是 Λ \bm{\varLambda} Λ只有一个非零对角元,即 λ = 0 \lambda=0 λ=0 A \bm{A} A n − 1 n-1 n1重特征值。(这道题主要利用了矩阵秩求解

(2)求 A \bm{A} A的非零特征值及 n n n个线性无关的特征向量。

  其次求 A \bm{A} A的非零特征值,因 A = a a T \bm{A}=\bm{aa}^\mathrm{T} A=aaT的对角元之和为 ∑ a i 2 \sum a_i^2 ai2,又由特征值性质: A \bm{A} A n n n个特征值之和为它的 n n n个对角元之和,从而由上知 ∑ a i 2 \sum a_i^2 ai2 A \bm{A} A的非零特征值。
  再求 A \bm{A} A的特征向量。对应于 λ = 0 \lambda=0 λ=0,解方程 A x = 0 \bm{Ax}=\bm{0} Ax=0。由
A = ( a 1 2 a 1 a 2 ⋯ a 1 a n a 2 a 1 a 2 2 ⋯ a 2 a n ⋮ ⋮ ⋮ a n a 1 a n a 2 ⋯ a n 2 ) ∼ ( a 1 a 2 ⋯ a n 0 0 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ 0 ) . \bm{A}=\begin{pmatrix}a^2_1&a_1a_2&\cdots&a_1a_n\\a_2a_1&a^2_2&\cdots&a_2a_n\\\vdots&\vdots&&\vdots\\a_na_1&a_na_2&\cdots&a_n^2\end{pmatrix}\sim\begin{pmatrix}a_1&a_2&\cdots&a_n\\0&0&\cdots&0\\\vdots&\vdots&&\vdots\\0&0&\cdots&0\end{pmatrix}. A=a12a2a1ana1a1a2a22ana2a1ana2anan2a100a200an00.
  得 n − 1 n-1 n1个线性无关的特征向量为
ξ 2 = ( − a 2 a 1 1 0 ⋮ 0 ) , ξ 3 = ( − a 3 a 1 0 1 ⋮ 0 ) , ⋯   , ξ n = ( − a n a 1 0 0 ⋮ 1 ) . \bm{\xi}_2=\begin{pmatrix}-\cfrac{a_2}{a_1}\\1\\0\\\vdots\\0\end{pmatrix},\bm{\xi}_3=\begin{pmatrix}-\cfrac{a_3}{a_1}\\0\\1\\\vdots\\0\end{pmatrix},\cdots,\bm{\xi}_n=\begin{pmatrix}-\cfrac{a_n}{a_1}\\0\\0\\\vdots\\1\end{pmatrix}. ξ2=a1a2100,ξ3=a1a3010,,ξn=a1an001.
  对应于 λ 1 = ∑ a i 2 \lambda_1=\sum a_i^2 λ1=ai2的特征向量 ξ 1 \bm{\xi}_1 ξ1。由 A = a a T \bm{A}=\bm{aa}^\mathrm{T} A=aaT,有
A a = ( a a T ) a = a ( a T a ) = ( a T a ) a . \bm{Aa}=(\bm{aa}^{\mathrm{T}})\bm{a}=\bm{a}(\bm{a}^\mathrm{T}\bm{a})=(\bm{a}^\mathrm{T}\bm{a})\bm{a}. Aa=(aaT)a=a(aTa)=(aTa)a.
  按定义,即知 A \bm{A} A有非零特征值 λ 1 = a T a \lambda_1=\bm{a}^\mathrm{T}\bm{a} λ1=aTa,且对应特征向量为 a \bm{a} a。(这道题主要利用了对角矩阵的性质求解

30.证明二次型 f = x T A x f=\bm{x}^\mathrm{T}\bm{Ax} f=xTAx ∥ x ∥ = 1 \lVert x\rVert=1 x=1时的最大值为矩阵 A \bm{A} A的最大特征值。

  设 λ 1 ⩾ λ 2 ⩾ ⋯ ⩾ λ n \lambda_1\geqslant\lambda_2\geqslant\cdots\geqslant\lambda_n λ1λ2λn A \bm{A} A n n n个特征值,由定理知,有正交变换 x = Q y \bm{x}=\bm{Qy} x=Qy,使 f ( x ) = λ 1 y 1 2 + ⋯ + λ n y n 2 f(\bm{x})=\lambda_1y_1^2+\cdots+\lambda_ny_n^2 f(x)=λ1y12++λnyn2。又 ∥ y ∥ = y T y = y T Q T Q y = x T x = ∥ x ∥ = 1 \lVert y\rVert=\bm{y}^\mathrm{T}\bm{y}=\bm{y}^\mathrm{T}\bm{Q}^\mathrm{T}\bm{Q}\bm{y}=\bm{x}^\mathrm{T}\bm{x}=\lVert x\rVert=1 y=yTy=yTQTQy=xTx=x=1,从而
m a x ∥ x ∥ = 1 f ( x ) = m a x ∑ y i 2 = 1 ( λ 1 y 1 2 + ⋯ + λ n y n 2 ) ⩽ λ 1 m a x ∑ y i 2 = 1 ∑ y i 2 = 1 = λ 1 . \begin{aligned} \underset{\lVert x\rVert=1}{\mathrm{max}}f(\bm{x})&=\underset{\sum y_i^2=1}{\mathrm{max}}(\lambda_1y_1^2+\cdots+\lambda_ny_n^2)\\ &\leqslant\lambda_1\underset{\sum y_i^2=1}{\mathrm{max}}\sum y_i^2=1=\lambda_1. \end{aligned} x=1maxf(x)=yi2=1max(λ1y12++λnyn2)λ1yi2=1maxyi2=1=λ1.
这道题主要利用了正交变换证明

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值