线代(第六版) -- 相似矩阵及二次型

向量的内积、长度及正交性

内积:

        x=\begin{pmatrix} x_{1}\\ x_{2}\\ ...\\ x_{n}\end{pmatrix} ,       y=\begin{pmatrix} y_{1}\\ y_{2}\\ ...\\ y_{n}\end{pmatrix}

        令[x,y]=x_{1}y_{1}+x_{2}y_{2}+...+x_{n}y_{n}

        则 [x,y] 称为向量xy的内积,就类似于< x,y>

        内积是两个向量之间的一种运算,结果是实数

        当xy都是行向量/列向量的时候,要转置(符合矩阵运算规则,前一列数=后一行数)

                [x,y]=x^{T}y

        性质:

                [x,y]=[y,x]

                [\lambda x,y]=\lambda [x,y]

                [x+y,z]=[x,z]+[y,z]

                当x=0时,[x,x]=0;当x\neq 0时,[x,x]>0

        施瓦茨不等式:

                [x,y]^{2}\leq [x,x][y,y]

n维向量的长度(或范数):\left \| x \right \|=\sqrt{[x,x]}=\sqrt{x_{1}^{2}+x_{2}^{2}+...+x_{n}^{2}}

        非负性:当x\neq 0时,\left \| x \right \|>0;当x=0时,\left \| x \right \|=0

        齐次性:\left \| \lambda x \right \|=\left | \lambda \right |\left \| x \right \|

        当\left \| x \right \|=1,称 x 为单位向量。

        单位化:若a\neq 0,取x=\frac{a}{\left \| a \right \|},则x是一个单位向量

        由施瓦茨不等式,有-1\leq \frac{\left [ x,y \right ]}{\left \| x \right \| \left \| y \right \|}\leq 1\;,\; \left \| x \right \| \left \| y \right \|\neq 0

n维向量的夹角,x\neq 0,y\neq 0,有\theta =\arccos \frac{\left | x,y \right |}{\left \| x \right \| \left \| y \right \|}

当 \left [ x,y \right ]=0 ,称向量xy正交;若x=0,则x与任何向量都正交

正交向量组:指一组两两相交的非零向量(任意拿两个向量出来都是正交的)

n维向量a_{1},a_{2},...,a_{r} 是一组两两相交的非零向量,则a_{1},a_{2},...,a_{r}线性无关

标准正交基:设n维向量e_{1},e_{2},...,e_{r}是向量空间V的一个基,两两相交,且都是单位向量

施密特正交化:

 正交矩阵(正交阵):若n阶矩阵A满足,A^{T}A=E(即A^{-1}=A^{T}

        方阵A为正交矩阵的充分必要条件是A的列(行)向量都是单位向量,且两两相交

        若A为正交矩阵,则A^{-1}=A^{T}也是正交矩阵,且\left | A \right |=1(或-1

        若AB都是正交矩阵,则AB也是正交矩阵
P为正交矩阵,则线性变化y=Px称为正交变换

        \left \| y \right \|=\sqrt{y^{T}y}=\sqrt{x^{T}P^{T}Px}=\sqrt{x^{T}x}=\left \| x \right \|

        正交变换保持向量长度不变

方阵的特征值与特征向量

An阶矩阵,如果数\lambdan维非零向量x使关系式Ax=\lambda x成立,\lambda特征值,x特征向量

特征方程:\left | A-\lambda E \right |=0

特征多项式:f(\lambda )=\left | A-\lambda E \right |

        特征方程解的个数为方程的次数(重根也要算进去)

n阶矩阵A=(a_{ij})的特征值为\lambda _{1},\lambda _{2},...,\lambda _{n}

        \lambda _{1}+\lambda _{2}+...+\lambda _{n}=a_{11}+a_{22}+...+a_{nn}

        \lambda _{1}\lambda _{2}\cdots \lambda _{n}=\left | A \right |   ,A为可逆矩阵的充分必要条件是特征值不全为0

\lambdaA的特征值,则\lambda ^{k}A^{k}的特征值;

\varphi (\lambda )\varphi (A)的特征值,\varphi (\lambda )=a_{0}+a_{1}\lambda +...+a_{m}\lambda ^{m}

                                        \varphi (A)=a_{0}E+a_{0}A+...+a_{m}A^{m}

\lambda _{1},\lambda _{2},..,\lambda _{m}是方阵Am个特征值,P_{1},P_{2},...P_{m}依次是与之对应的特征向量,如果\lambda _{1},\lambda _{2},..,\lambda _{m}各不相等,则P_{1},P_{2},...P_{m}线性无关

\lambda _{1}\lambda _{2}是方阵A的两个不同特征值,\xi _{1},\xi_{2},...,\xi_{s}\eta _{1},\eta_{2},...,\eta_{l}分别对应于\lambda _{1}\lambda _{2}的线性无关的特征向量\xi _{1},\xi_{2},...,\xi_{s},\eta _{1},\eta_{2},...,\eta_{l}线性无关(其实是对应重根的)

相似向量

A,B都是n阶矩阵,若有可逆矩阵P,使P^{-1}AP=B,则矩阵AB相似

n阶矩阵AB相似,则AB的特征值相同

        要是与对角矩阵相似,特征值就是对角矩阵的元素了

n阶矩阵A与对角矩阵相似(即A能对角化)的充分必要条件是An个线性无关的特征向量

        如果n阶矩阵An个特征值互不相等,则A与对角矩阵相似

对称矩阵的对角化

性质:对称矩阵的特征值为实数

           若\lambda _{1},\lambda _{2}是对称矩阵A的两个特征值,P_{1},P_{2}是对应的特征向量,若\lambda _{1}\neq \lambda _{2},则P_{1}P_{2}正交

An阶对称矩阵,则必有正交矩阵P,使P^{-1}AP=P^{T}AP=\Lambda,其中\Lambda是以An个特征值为对角元的对角矩阵

        设An阶对称矩阵,\lambdaA的特征方程的k重根,则矩阵A-\lambda E的秩R(A-\lambda E)=n-k,从而对应特征值\lambda恰有k个线性无关的特征向量

二次型及标准型

二次型:含有n个变量x_{1},x_{2},...,x_{n}的二次齐次函数

               f(x_{1},x_{2},...,x_{n})=a_{11}{x_{1}}^{2}+a_{22}{x_{2}}^{2}+\cdots +a_{nn}{x_{n}}^{2}+2a_{12}x_{1}x_{2}+2a_{13}x_{1}x_{3}+\cdots +2a_{n-1,n}x_{n-1}x_{n}

标准型(或法式):二次型只含平方项

                f=k_{1}{y_{1}}^{2}+k_{2}{y_{2}}^{2}+\cdots +k_{n}{y_{n}}^{2}

                二次型可用矩阵f=x^{T}Ax表示,其中A为对称矩阵,称为二次型f的矩阵,f称为对称矩阵A的二次型,对称矩阵A的秩称为二次型f的秩

合同:设ABn阶矩阵,若有可逆矩阵C,使B=C^{T}AC,则称矩阵AB合同

         相似的矩阵一定是合同的,合同的矩阵不一定是相似的

        若A为对称矩阵,则B=C^{T}AC也为对称矩阵,且R(B)=R(A)

任给二次型f=\sum_{ij=1}^{n}a_{ij}x_{i}x_{j}(a_{ij}=a_{ji}),总有正交变换x=Py,使f化为标准型f=\lambda _{1}{y_{1}}^{2}+\lambda _{2}{y_{2}}^{2}+\cdots +\lambda _{n}{y_{n}}^{2},其中\lambda _{1},\lambda _{2},\cdots \lambda _{n}是矩阵A=(a_{ij})的特征值

正定二次型

惯性定理:设二次型f=x^{T}Ax的秩为r,且有两个可逆变换x=Cyx=Pz使                                 f=k_{1}{y_{1}}^{2}+k_{2}{y_{2}}^{2}+\cdots +k_{r}{y_{r}}^{2}(k_{i}\neq 0)

及      f=\lambda _{1}{z_{1}}^{2}+\lambda _{2}{z_{2}}^{2}+\cdots +\lambda _{r}{z_{r}}^{2}(z_{i}\neq 0)

k_{1},\cdots ,k_{r}中正数的个数与\lambda _{1},\cdots \lambda _{r}中正数的个数相等

正惯性系数:二次型的标准形中正系数的个数

负惯性系数:二次型的标准形中负系数的个数

设二次型f(x)=x^{T}Ax,

        正定二次型:对任何x\neq 0,都有f(x)> 0,并称对称矩阵A使正定的

        负定二次型:对任何x\neq 0,都有f(x)< 0,并称对称矩阵A使负定的

n阶二次型f=x^{T}Ax为正定的充分必要条件使:他的标准形的n个系数全为正,即它的规范形的n个系数全为1,亦即它的正惯性指数等于n

对称矩阵A为正定的充分必要条件使:A的特征值全为正

赫尔维茨定理:

        对称矩阵A为正定的充分必要条件使:A的各阶主子式都为正

                a_{11}>0\; ,\; \begin{vmatrix} a_{11} &a_{12} \\ a_{21}& a_{22} \end{vmatrix}>0\; ,\; \cdots \; ,\; \begin{vmatrix} a_{11} &\cdots & a_{1n}\\ \vdots & & \vdots \\ a_{n1}& \cdots & a_{nn} \end{vmatrix}>0

        对称矩阵A为负定的充分必要条件使:奇数阶主子式为负,而偶数主子式为正

                (-1)^{r}\begin{vmatrix} a_{11} &\cdots & a_{1r}\\ \vdots & & \vdots \\ a_{r1}& \cdots & a_{nn} \end{vmatrix}>0\; (r=1,2,\cdots ,n)​​​​​​​

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值