SARSA(State-Action-Reward-State-Action)强化学习算法详细解读

点击链接加入群聊【技术交流群1】:

SARSA(State-Action-Reward-State-Action)是一种基于强化学习的算法,用于解决环境状态已知但转移函数未知的马尔可夫决策过程(MDP)问题。与Q学习类似,SARSA也通过不断地与环境交互来更新行动策略,以最大化累计奖励。然而,与Q学习不同的是,SARSA是一种在线学习算法,它在每个时间步更新Q值函数,并且采用了与当前策略匹配的行动选择策略。

SARSA的核心思想是通过不断地更新Q值函数来逐步调整行动策略。具体来说,它在每个时间步根据当前状态选择一个行动,与环境进行交互,获得即时奖励和下一个状态。然后,根据这些信息更新Q值函数,以及下一个状态和行动的Q值。

SARSA的更新规则为:

Q(s,a) = Q(s,a) + α [r + γQ(s',a') - Q(s,a)]

其中,s和a表示当前状态和动作,s'和a'表示下一个状态和动作,r表示在执行动作a后获得的即时奖励,α表示学习率,γ表示折扣因子。该式的含义是:当前状态下执行动作a所获得的回报等于当前的Q值加上下一个状态和行动的Q值的折扣后的增量。

与Q学习不同,SARSA采用了ε-greedy策略来选择下一步的动作。具体来说,智能体有一定概率随机选择动作以保证探索新的状态和动作,而有一定概率选择当前Q值最大的动作以保证利用已有的知识,并且根据当前策略选择下一步的行动。

SARSA算法的优点是可以在与环境交互的同时进行学习,并且可以处理连续状态空间和动作空间。然而,与Q学习相比,SARSA的收敛速度较慢,并且容易陷入局部最优解。

SARSA的应用场景与Q学习类似,包括机器人控制、游戏AI、自动驾驶等领域。例如,在机器人控制中,SARSA可以帮助机器人学习如何在未知环境中执行动作以完成任务,而每次与环境交互时都可以更新策略。又如,在游戏AI中,SARSA可以帮助智能体根据当前状态选择合适的操作,并通过与游戏环境的交互来学习最优策略。

  • 11
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 我可以提供一个简单的 q-learning 算法 matlab 代码示例: ``` % Define the Q-table Q = zeros(num_states, num_actions); % Define the learning rate alpha = 0.1; % Define the discount factor gamma = 0.9; % Define the exploration rate epsilon = 0.1; for episode = 1:num_episodes % Initialize the state state = init_state; while ~is_terminal(state) % Choose an action using epsilon-greedy strategy if rand < epsilon action = randi(num_actions); else [~, action] = max(Q(state, :)); end % Take the action and observe the next state and reward next_state = transition(state, action); reward = get_reward(state, action, next_state); % Update the Q-table Q(state, action) = Q(state, action) + alpha * (reward + gamma * max(Q(next_state, :)) - Q(state, action)); % Update the state state = next_state; end end ``` 这是一个简单的示例,你需要自己定义 `num_states`,`num_actions`,`init_state`,`is_terminal`,`transition`,`get_reward` 等函数。 ### 回答2: Q-Learning算法是一种强化学习算法,可以求出一种最优策略,使得在特定环境下,智能体可以做出最优决策。Matlab是一种强大的科学计算软件,可以应用于求解各种数学问题和算法,因此可以使用Matlab编写Q-Learning算法的代码。 首先,我们需要定义Q表,即存储状态-行为对的Q值的表格。在Matlab中,我们可以定义一个二维数组来表示Q表格,其中行号表示状态编号,列号表示行为编号。我们可以使用rand函数初始化Q表格中的所有Q值。 接下来,我们需要定义一个奖励函数,该函数应该根据智能体目前的状态和行为返回相应的奖励值,以便根据奖励值更新Q值。在Matlab中,我们可以使用function关键字定义一个奖励函数。例如: function r = reward(state, action) if (state == 1 && action == 2) r = 100; elseif (state == 2 && action == 1) r = -100; else r = 0; end end 其中,参数stateaction分别表示当前状态和行为,返回值r表示相应的奖励值。 接下来,我们需要定义一个函数来选择下一个行为。在Q-Learning中,我们可以使用ε-greedy策略来选择下一个行为。在Matlab中,我们可以定义选择行为的函数如下: function next_action = choose_action(Q, state, epsilon) if (rand < epsilon) % Explore next_action = randi(size(Q,2)); else % Exploit [~, next_action] = max(Q(state,:)); end end 其中,参数Q表示当前的Q表格,state表示当前状态,epsilon表示ε-greedy策略中的ε值,返回值next_action表示选择的下一个行为。 然后,我们可以定义一个主循环来实现Q-Learning算法的迭代。在每一步迭代中,我们进行如下步骤: 1. 根据当前状态和行为计算奖励值。 2. 根据奖励值和Q-Learning公式更新Q值。 3. 选择下一个行为。 4. 转移到下一个状态,并更新状态。 5. 如果达到终止状态,则退出循环。 在Matlab中,我们可以定义主循环如下: % Q-Learning algorithm gamma = 0.9; % Discount factor epsilon = 0.1; % Exploration probability alpha = 0.1; % Learning rate Q = rand(10,4); % Initialize Q table for episode = 1:1000 % Run 1000 episodes state = randi(10); % Choose a random initial state while (state ~= 10) % While state is not terminal % Choose an action action = choose_action(Q, state, epsilon); % Take the action and observe the reward and next state reward = reward(state, action); next_state = state + 1; % Update Q value [~, max_action] = max(Q(next_state,:)); Q(state,action) = Q(state,action) + alpha*(reward + gamma*Q(next_state,max_action) - Q(state,action)); % Update state state = next_state; end end 其中,gamma表示折扣因子,alpha表示学习率,Q为Q值表,episode为迭代次数。 以上就是用Matlab实现Q-Learning算法的代码,以实现智能体做出最优决策的目标。 ### 回答3: Q-learning是一种强化学习算法,可以用于解决很多机器学习、控制和优化问题。它是一种试错学习算法,实现了基于奖励的学习,通过学习一系列动作的结果,来优化智能体行动决策的策略。本文将介绍Q-learning算法的MATLAB代码实现。 Q-learning算法MATLAB代码实现的步骤: 1.初始化Q矩阵,使其对于每个状态-动作对都有一个初始估计值; 2.选择动作,从当前状态S开始,使用ε-greedy算法,以生成一个实际执行的动作; 3.执行动作,观察来自环境的奖励R和从新状态S’获得的信息; 4.使用q-learning更新公式更新Q矩阵中的值; 5.将状态更新为新状态; 6.重复执行2-5步,直到达到终止条件。 MATLAB代码实现 步骤1:初始化 我们需要定义状态数、动作数、初始Q值为0。 %Number of States S=8; %Number of Actions A=3; %Q Matrix Q=zeros(S,A); 步骤2:选择动作 epsilon-greedy算法是一种基于概率的策略,它考虑探索和利用两方面的需求。当我们应用该算法时,我们使用一个随机数生成器来生成一个0到1之间的随机数。如果这个随机数小于ε偏移量,则采用一种探索性策略。否则,它会采用一种利用性策略。 %Parameters (Taken from the book) alpha=0.5; %Learning Rate gamma=0.8; %Discount Factor epsilon=0.1; %Exploration Probability %Choosing Action (epsilon greedily): if rand<=epsilon %Random Action action=randi([1 A],1,1); else [~,action]=max(Q(state,:)); end 步骤3:执行动作 在这一步中,我们将得到奖励和新状态。 [reward, newstate] = GetRewardAndNewState(state,action) 步骤4:更新Q矩阵 这是Q-learning算法中最重要和最具影响力的步骤之一,这决定了Q值的变化。一旦我们得到了奖励和新状态,我们就可以使用Q-learning算法的更新公式来更新Q值。Q值通过向目前的估计值添加一个学习偏差来更新。其中学习速率和折扣因子的角色是减少超预测估计的大小,从而引导死亡者的行为。 %Q-learning update Q(state,action)= Q(state,action)+ alpha * (reward + gamma * max(Q(newstate,:))-Q(state,action)); 步骤5:更新状态 state=newstate; 步骤6:终止条件 在算法开始执行之前,可以指定终止条件。在我们的示例中,如果按照某种规则达到某个状态,该算法将终止。 完整的MATLAB代码示例 你可以使用以下代码作为q-learning算法MATLAB代码实现的参考。 clc;clear;close all; %% Defining Q-Learning Parameters %Number of States S=8; %Number of Actions A=3; %Q Matrix Q=zeros(S,A); %Parameters (Taken from the book) alpha=0.5; %Learning Rate. gamma=0.8; %Discount Factor. epsilon=0.1; %Exploration Probability. %Choosing Action (epsilon greedily): if rand<=epsilon %Random Action action=randi([1 A],1,1); else [~,action]=max(Q(state,:)); end %Reward Function function [rew, newstate] = GetRewardAndNewState(state,action) switch action case 1 %Action 1 rew=0; switch state case 2 newstate=6; rew=5; case 3 newstate=7; otherwise newstate=state; end case 2 %Action 2 rew=0; switch state case 6 newstate=2; rew=-3; case 7 newstate=3; otherwise newstate=state; end case 3 %Action 3 rew=0; switch state case {1,4,5} newstate=state+1; otherwise newstate=state; end end end %Main Program for episode=1:5000 %Number of Episodes %Initializing values: state=1; while state~=8 if rand<=epsilon %Exploration %Random Action action=randi([1 A],1,1); else %Exploitation [~,action]=max(Q(state,:)); end %get new state and reward [rew, newstate] = GetRewardAndNewState(state,action); % update Q Q(state,action)= Q(state,action)+ alpha * (rew + gamma * max(Q(newstate,:))-Q(state,action)); %update state state=newstate; end end %Output the Q-Matrix Q %Formatting the Q-Matrix fprintf(' '); fprintf('%2s','A'); fprintf('\n'); for ii=1:S fprintf('%2d ',ii); %State Number. for jj=1:A fprintf('%2d',Q(ii,jj)); %Q value for each action. end fprintf('\n'); end %Show the most optimal path to reach the goal start_state=1; state=start_state; fprintf('Optimal Path: %d ', state); while state~=8 [~,action]=max(Q(state,:)); [rew, newstate] = GetRewardAndNewState(state,action); state=newstate; fprintf('%d ', state); end fprintf('\n');
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值