人脸检测--Grid Loss: Detecting Occluded Faces

提出GridLoss方法,通过区域分块优化遮挡人脸检测。适用于实时应用,改进CNN结构,采用AggregateChannelFeatures特征,多尺度检测并利用非极大值抑制。GridLoss层分块计算损失,增强弱特征区域的学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Grid Loss: Detecting Occluded Faces
ECCV2016

遮挡问题还是要通过区域分块来解决

针对有遮挡的人脸检测,如果从训练数据的角度来解决这个问题难度比较大。我们从定义新的损失函数的角度来解决这个问题。通过定义一个 novel loss layer 来分块考虑人脸计数误差损失,本文的另一个亮点是 real time

这里写图片描述

我们的整个网络结构示意图
这里写图片描述

3 Grid Loss for CNNs
本文的检测方式是类似于文献【33】的滑动窗口方式

3.1 Neural Network Architecture
我们的CNN结构由两个 5×5 卷积层组成,每个卷积层后面是 Rectified Linear Unit (ReLU) 激活相应,在两个卷积层之间加入了一个 Local Contrast Normalization
(LCN) layer 来做相应归一化,在最后一个卷积层后面使用了一个小的 dropout

因为速度的因素,这里我们采用了 Aggregate Channel Features (ACF) 特征,对该特征降采样4倍输入卷积层,在检测的时候,我们是多尺度检测的,使用非极大值抑制

3.2 Grid Loss Layer
这里主要讲人脸区域特征图进行分块,然后定义 part detectors 的损失函数,组合不同的part detectors 损失函数及整体检测损失函数得到总体损失函数。
error signals of less discriminative parts are strengthened during training, encouraging the CNN to focus on making weak parts stronger rather than strengthening already discriminative parts
the influence of several strong distinguished parts decreases
简单的来说当有特征的区域被遮挡了,这时候我们需要依靠特征不明显的区域。

4 Evaluation
这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值