The geometry of multiple images
The geometry of multiple images--DJV 格式
A Review of Computer Vision Techniques for the Analysis of Urban Traffic
Automatic video analysis from urban surveillance
cameras is a fast-emerging field based on computer vision
techniques. We present here a comprehensive review of the
state-of-the-art computer vision for traffic video with a critical
analysis and an outlook to future research directions. This field
is of increasing relevance for intelligent transport systems (ITSs).
The decreasing hardware cost and, therefore, the increasing de-
ployment of cameras have opened a wide application field for
video analytics. Several monitoring objectives such as congestion,
traffic rule violation, and vehicle interaction can be targeted using
cameras that were typically originally installed for human oper-
ators. Systems for the detection and classification of vehicles on
highways have successfully been using classical visual surveillance
techniques such as background estimation and motion tracking
for some time. The urban domain is more challenging with respect
to traffic density, lower camera angles that lead to a high degree
of occlusion, and the variety of road users. Methods from object
categorization and 3-D modeling have inspired more advanced
techniques to tackle these challenges. There is no commonly used
data set or benchmark challenge, which makes the direct com-
parison of the proposed algorithms difficult. In addition, evalu-
ation under challenging weather conditions (e.g., rain, fog, and
darkness) would be desirable but is rarely performed. Future
work should be directed toward robust combined detectors and
classifiers for all road users, with a focus on realistic conditions
during evaluation.
Vehicle model recognition from frontal view image measurements
This paper deals with a novel vehicle manufacturer and model recognition scheme, which is enhanced by
color recognition for more robust results. A probabilistic neural network is assessed as a classifier and it is
demonstrated that relatively simple image processing measurements can be used to obtain high
performance vehicle authentication. The proposed system is assisted by a previously developed license
plate recognition, a symmetry axis detector and an image phase congruency calculation modules. The
reported results indicate a high recognition rate and a fast processing time, making the system suitable for
real-time applications.
Vehicle Detection and Tracking in Car Video Based on Motion Model
Vehicle Detection and Tracking in Car Video Based on Motion Model--This work aims at real-time in-car video analysis to detect and track vehicles ahead for safety, auto-driving, and target tracing. This
paper describes a comprehensive approach to localize target vehicles in video under various environmental conditions. The extracted
geometry features from the video are projected onto a 1D profile continuously and are tracked constantly. We rely on temporal
information of features and their motion behaviors for vehicle identification, which compensates for the complexity in recognizing
vehicle shapes, colors, and types. We model the motion in the field of view probabilistically according to the scene characteristic and
vehicle motion model. The Hidden Markov Model is used for separating target vehicles from background, and tracking them
probabilistically. We have investigated videos of day and night on different types of roads, showing that our approach is robust and
effective in dealing with changes in environment and illumination, and that real time processing becomes possible for vehicle borne
cameras.
Projection and Least Square Fitting
Projection and Least Square Fitting with Perpendicular Offsets based Vehicle License Plate Tilt Correction
An Algorithm for License Plate Recognition Applied to ITS
An algorithm for license plate recognition (LPR)
applied to the intelligent transportation system is proposed on
the basis of a novel shadow removal technique and character
recognition algorithms. This paper has two major contributions.
One contribution is a new binary method, i.e., the shadow re-
moval method, which is based on the improved Bernsen algorithm
combined with the Gaussian filter. Our second contribution is a
character recognition algorithm known as support vector machine
(SVM) integration. In SVM integration, character features are
extracted from the elastic mesh, and the entire address character
string is taken as the object of study, as opposed to a single
character. This paper also presents improved techniques for im-
age tilt correction and image gray enhancement. Our algorithm
is robust to the variance of illumination, view angle, position,
size, and color of the license plates when working in a complex
environment. The algorithm was tested with 9026 images, such
as natural-scene vehicle images using different backgrounds and
ambient illumination particularly for low-resolution images. The
license plates were properly located and segmented as 97.16%and
98.34%, respectively. The optical character recognition system
is the SVM integration with different character features, whose
performance for numerals, Kana, and address recognition reached
99.5%, 98.6%, and 97.8%, respectively. Combining the preceding
tests, the overall performance of success for the license plate
achieves 93.54% when the system is used for LPR in various
complex conditions
Accuracy of Laplacian Edge Detectors
The sources of error for the edge finding technique proposed by Marr and Hildreth (D. Marr and T. Poggio, Proc. R. Soc. London Ser. B204, 1979, 301–328; D. Marr and E. Hildreth, Proc. R. Soc. London Ser. B.207, 1980, 187–217) are identified, and the magnitudes of the errors are estimated, based on idealized models of the most common error producing situations. Errors are shown to be small for linear illuminations, as well as for nonlinear illuminations with a second derivative less than a critical value. Nonlinear illuminations are shown to lead to spurious contours under some conditions, and some fast techniques for discarding such contours are suggested.
A discrete expression of Canny's criteria for step
Optimal filters for edge detection are usually developed in the continuous domain and then transposed by sampling to the discrete domain. Simpler filters are directly defined in the discrete domain. We define criteria to compare filter performances in the discrete domain. Canny has defined (1983, 1986) three criteria to derive the equation of an optimal filter for step edge detection: good detection, good localization, and low-responses multiplicity. These criteria seem to be good candidates for filter comparison. Unfortunately, they have been developed in the continuous domain, and their analytical expressions cannot be used in the discrete domain. We establish three criteria with the same meaning as Canny's.
On Improving the Efficiency of Tensor Voting
This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust
perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical
approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second
scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: The stick tensor voting and
the stick component of the plate tensor voting must reinforce surfaceness, the plate components of both the plate and ball tensor voting
must boost curveness, whereas junctionness must be strengthened by the ball component of the ball tensor voting. Two new
parameters have been proposed for the second formulation in order to control the potentially conflictive influence of the stick
component of the plate vote and the ball component of the ball vote. Results show that the proposed formulations can be used in
applications where efficiency is an issue since they have a complexity of order O(1). Moreover, the second proposed formulation has
been shown to be more appropriate than the original tensor voting for estimating saliencies by appropriately setting the two new
parameters.
Selecting Critical Patterns Based on Local Geometrical
Pattern selection methods have been traditionally developed with a dependency on a specific classifier. In contrast, this paper presents a method that selects critical patterns deemed to carry essential information applicable to train those types of classifiers which require spatial information of the training data set. Critical patterns include those edge patterns that define the boundary and those border patterns that separate classes. The proposed method selects patterns from a new perspective, primarily based on their location in input space. It determines class edge patterns with the assistance of the approximated tangent hyperplane of a class surface. It also identifies border patterns between classes using local probability. The proposed method is evaluated on benchmark problems using popular classifiers, including multilayer perceptrons, radial basis functions, support vector machines, and nearest neighbors. The proposed approach is also compared with four state-of-the-art approaches and it is shown to provide similar but more consistent accuracy from a reduced data set. Experimental results demonstrate that it selects patterns sufficient to represent class boundary and to preserve the decision surface.
Fast LOG Filtering Using Recursive Filters
Marr and Hildreth's theory of LoG filtering with multiple scales has been extensively elaborated. One problem with LoG filtering is that it is very time-consuming, especially with a large size of filters. This paper presents a recursive convolution scheme for LoG filtering and a fast algorithm to extract zero-crossings. It has a constant computational complexity per pixel and is independent of the size of the filter. A line buffer is used to determine the locations of zero-crossings along with filtering hence avoiding the need for an additional convolution and extra memory units. Various images have been tested
The Canny Edge Detector Revisited
Canny (1986) suggested that an optimal edge detector should maximize both signal-to-noise ratio and
localization, and he derived mathematical expressions for these criteria. Based on these criteria, he claimed that
the optimal step edge detector was similar to a derivative of a gaussian. However, Canny’s work suffers from
two problems. First, his derivation of localization criterion is incorrect. Here we provide a more acurate
localization criterion and derive the optimal detector from it. Second, and more seriously, the Canny criteria
yield an infinitely wide optimal edge detector. The width of the optimal detector can however be limited by
considering the effect of the neighbouring edges in the image. If we do so, we find that the optimal step edge
detector, according to the Canny criteria, is the derivative of an ISEF filter, proposed by Shen and Castan
(1992).
In addition, if we also consider detecting blurred (or non-sharp) gaussian edges of different widths, we find that
the optimal blurred-edge detector is the above optimal step edge detector convolved with a gaussian. This
implies that edge detection must be performed at multiple scales to cover all the blur widths in the image. We
derive a simple scale selection procedure for edge detection, and demonstrate it in one and two dimensions.
OpenCV 2 Computer Vision Application Programming Cookbook
Overview of OpenCV 2 Computer Vision Application Programming Cookbook
Teaches you how to program computer vision applications in C++ using the different features of the OpenCV library
Demonstrates the important structures and functions of OpenCV in detail with complete working examples
Describes fundamental concepts in computer vision and image processing
Gives you advice and tips to create more effective object-oriented computer vision programs
Contains examples with source code and shows results obtained on real images with detailed explanations and the required screenshots
Intensity and Edge-Based Symmetry Detection Applied to Car-Following
Intensity and Edge-Based Symmetry Detection Applied to Car-Following
We present two methods for detecting symmetry in images, one based directly on the intensity values and another one based on a discrete representation of local orientation. A symmetry finder has been developed which uses the intensity-based method to search an image for compact regions which display some degree of mirror symmetry due to intensity similarities across a straight axis. In a different approach, we look at symmetry as a bilateral relationship between local orientations. A symmetryenhancing edge detector is presented which indicates edges dependent on the orientations at two different image positions. SEED, as we call it, is a detector element implemented by a feedforward network that holds the symmetry conditions. We use SEED to find the contours of symmetric objects of which we know the axis of symmetry from the intensity-based symmetry finder. The methods presented have been applied to the problem of visually guided car-following. Real-time experiments with a system for automatic headway control on motorways have been successful.
Accurate Robust Symmetry Estimation
Accurate Robust Symmetry Estimation
Stephen Smith and Mark Jenkinson
There are various applications, both in medical and non-medical image analysis, which require the automatic detection of the line (2D images) or plane (3D) of reflective symmetry of objects. There exist relatively simple methods of finding reflective symmetry when object images are complete (i.e., completely symmetric and perfectly segmented from image “background”). A much harder problem is finding the line or plane of symmetry when the object of interest contains asymmetries, and may not have well defined edges.
Learning based Symmetric Features Selection for Vehicle Detection
Learning based Symmetric Features Selection for Vehicle Detection
This paper describes a symmetric features selection strategy based on statistical learning method for detecting vehicles with a single moving camera for autonomous driving. Symmetry is a good class of feature for vehicle detection, but the areas with high symmetry and threshold for segmentation is hard to be decided. Usually, the additional supposition is added artificially, and this will decrease the robustness of algorithms. In this paper, we focus on the problem of symmetric features selection using learning method for autonomous driving environment. Global symmetry and local symmetry are defined and used to construct a cascaded structure with a one-class classifier followed by a two-class classifier.
Method of removing moving shadow based on texture
Method of removing moving shadow based on texture
Approach of vehicle segmentation based on texture character
Approach of vehicle segmentation based on texture character
A Background Reconstruction Method Based on Double-background
In this paper, we show a new method to reconstruct and update the background. This approach is based on double-background. We use the statistical information of the pixel intensity to construct a background that represents the status during a long time, and construct another background with feedback information in motion detection that represents the recent changes at a short time. This couple of background images is fused to construct and update the background image used to motion detection. The background reconstruction algorithm can perform well on the tests that we have applied it to.
Statistical Change Detection by the Pool Adjacent Violators Algorithm
In this paper we present a statistical change detection approach aimed at being robust with respect to the main disturbance factors acting in real-world applications, such as illumination changes, camera gain and exposure variations, noise. We rely on modeling the effects of disturbance factors on images as locally order-preserving transformations of pixel intensities plus additive noise. This allows us to identify within the space of all the possible image change patterns the subspace corresponding to disturbance factors effects. Hence, scene changes can be detected by a-contrario testing the hypothesis that the measured pattern is due to disturbance factors, that is by computing a distance between the pattern and the subspace. By assuming additive gaussian noise, the distance can be computed within a maximum likelihood non-parametric isotonic regression framework. In particular, the projection of the pattern onto the subspace is computed by an O(N) iterative procedure known as Pool Adjacent Violators algorithm.
Optimal multi-level thresholding using a two-stage Otsu optimization approach
Otsu’s method of image segmentation selects an optimum threshold by maximizing the between-class variance in a gray image. However, this method becomes very time-consuming when extended to a multi-level threshold problem due to the fact that a large number of iterations are required for computing the cumulative probability and the mean of a class. To greatly improve the efficiency of Otsu’s method, a new fast algorithm called the TSMO method (Two-Stage Multithreshold Otsu method) is presented. The TSMO method outperforms Otsu’s method by greatly reducing the iterations required for computing the between-class variance in an image. The experimental results show that the computational time increases exponentially for the conventional Otsu method with an average ratio of about 76. For TSMO-32, the maximum computational time is only 0.463 s when the class number M increases from two to six with relative errors of less than 1% when compared to Otsu’s method. The ratio of computational time of Otsu’s method to TSMO-32 is rather high, up to 109,708, when six classes (M = 6) in an image are used. This result indicates that the proposed method is far more efficient with an accuracy equivalent to Otsu’s method. It also has the advantage of having a small variance in runtimes for different test images.
Environmentally Robust Motion Detection for Video Surveillance
Most video surveillance systems require to manually set a motion detection sensitivity level to generate motion alarms. The performance of motion detection algorithms, embedded in closed circuit television (CCTV) camera and digital video recorder (DVR), usually depends upon the preselected motion sensitivity level, which is expected to work in all environmental conditions. Due to the preselected sensitivity level, false alarms and detection failures usually exist in video surveillance systems. The proposed motion detection model based upon variational energy provides a robust detection method at various illumination changes and noise levels of image sequences without tuning any parameter manually. We analyze the structure mathematically and demonstrate the effectiveness of the proposed model with numerous experiments in various environmental conditions. Due to the compact structure and efficiency of the proposed model, it could be implemented in a small embedded system.
Cooperative Fusion of Stereo and Motion
Cooperative Fusion of Stereo and Motion
This paper presents a new matching algorithm based on cooperative fusion of stereo and motion cues. In this algorithm, stereo disparity and image flow values are recovered from two successive pairs of stereo images by solving the stereo and motion correspondence problems. Feature points are extracted from the images as matching objects. The entire matching process composes of a network of four subprocesses (two for stereo and two for motion). Each of the subprocesses can access information from connected nodes to perform the disambiguation. The “best” matches are obtained in a relaxation manner using the 3-D continuity constraint. Experimental results are presented to illustrate the performances of the proposed method
A Treatise on Mathematical Theory of Elasticity (1944)(ISBN 0486601749)
Love, A Treatise on Mathematical Theory of Elasticity (1944)(ISBN 0486601749).djvu
第三部分(共三部分)
Love, A Treatise on Mathematical Theory of Elasticity (1944)(ISBN 0486601749)
Love, A Treatise on Mathematical Theory of Elasticity (1944)(ISBN 0486601749)
第一部分(共三部分)
A Treatise on Mathematical Theory of Elasticity (1944)(ISBN 0486601749)
Love, A Treatise on Mathematical Theory of Elasticity (1944)(ISBN 0486601749).djvu
第二部分(共三部分)
Video Tracking -- Theory and Practice
Video Tracking -- Theory and Practice
Video Tracking provides a comprehensive treatment of the fundamental aspects of algorithm and application development for the task of estimating, over time, the position of objects of interest seen through cameras. Starting from the general problem definition and a review of existing and emerging video tracking applications, the book discusses popular methods, such as those based on correlation and gradient-descent. Using practical examples, the reader is introduced to the advantages and limitations of deterministic approaches, and is then guided toward more advanced video tracking solutions, such as those based on the Bayes’ recursive framework and on Random Finite Sets.
Computational Vision and Medical Image Processing Recent Trends
Computational Vision and Medical Image Processing Recent Trends
This book contains extended versions of papers presented at the international Conference VIPIMAGE 2009 – ECCOMAS Thematic Conference on Computational Vision and Medical Image, that was held at Faculdade de Engenharia da Universidade do Porto, Portugal, from 14th to 16th of October 2009. This conference was the second ECCOMAS thematic conference on computational vision and medical image processing. It covered topics related to image processing and analysis, medical imaging and computational modelling and simulation, considering their multidisciplinary nature. The book collects the state-of-the-art research, methods and new trends on the subject of computational vision and medical image processing contributing to the development of these knowledge areas.
Digital Image Processing for Medical Applications (Cambridge, 2009)
Digital Image Processing for Medical Applications (Cambridge, 2009)
Image processing is a hands-on discipline, and the best way to learn is by doing. This text takes its motivation from medical applications and uses real medical images and situations to illustrate and clarify concepts and to build intuition, insight and understanding. Designed for advanced undergraduates and graduate students who will become end-users of digital image processing, it covers the basics of the major clinical imaging modalities, explaining how the images are produced and acquired. It then presents the standard image processing operations, focusing on practical issues and problem solving. Crucially, the book explains when and why particular operations are done, and practical computer-based activities show how these operations affect real images. All images, links to the public-domain software ImageJ and custom plug-ins, and selected solutions are available from www.cambridge.org/books/dougherty.
Robust threshold estimation for images with unimodal histograms
Robust threshold estimation for images with unimodal histograms
Application of Shape Analysis Techniques for the Classification of Vehicles
Application of Shape Analysis Techniques for the Classification of Vehicles
Simple Low Level Features for Image Analysis
Simple Low Level Features for Image Analysis
图像融合中角点检测技术研究
图像融合中角点检测技术研究--图像融合中角点检测技术研究
Solving the process of hysteresis without determining the optimal thresholds
Solving the process of hysteresis without determining the optimal thresholds
On candidates selection for hysteresis thresholds in edge detection
On candidates selection for hysteresis thresholds in edge detection
Extracting Straight Lines
Extracting Straight Lines---line detection edge detection
Robust fragments-based tracking with adaptive feature selection
Robust fragments-based tracking with adaptive feature selection
Corner Detection Algorithms for Digital Images in Last Three Decades
Corner Detection Algorithms for Digital Images in Last Three Decades
A high performance edge detector based on fuzzy inference rules
A high performance edge detector based on fuzzy inference rules
Fast image region growing
Fast image region growing---Fast image region growing