TensorFlow 是一个开源软件库,用于使用数据流图进行数值计算。换句话说,即是构建深度学习模型的最佳方式。本文整理了一些优秀的有关 TensorFlow 的教程和项目列表。
一、教程
TensorFlow Tutorial 1 — 从基础到更有趣的 TensorFlow 应用
TensorFlow Tutorial 2 — 基于 Google TensorFlow 框架 的深度学习简介,这些教程是 Newmu 的Theano 直接端口
TensorFlow Examples — 给初学者的 TensorFlow 教程和 代码示例
Sungjoon’s TensorFlow-101 — 通过 Python 使用 Jupyter Notebook 编写的 TensorFlow 教程
Terry Um’s TensorFlow Exercises — 从其他 TensorFlow 示例重新创建代码
Installing TensorFlow on Raspberry Pi 3 — TensorFlow 在树莓派上正确编译和运行
Classification on time series — 在 TensorFlow 中使用 LSTM 对手机传感器数据进行递归神经网络分类
二、模型/项目
Show, Attend and Tell — 基于聚焦机制的 图像字幕生成器 (聚焦机制「Attention Mechanism」是当下深度学习前沿热点之一,能够逐个关注输入的不同部分,给出一系列理解)
Neural Style — Neural Style 的实现(Neural Style 是让机器模仿已有画作的绘画风格把一张图片重新绘制的算法)
Pretty Tensor — Pretty Tensor 提供了一个高级构建器 API
Neural Style — Neural Style 的实现
TensorFlow White Paper Notes — 带注释的笔记和 TensorFlow 白皮书的摘要,以及 SVG 图形和文档 链接
NeuralArt — 艺术风格神经算法的实现
使用 TensorFlow 和 PyGame 来深度强化学习乒乓球
Generative Handwriting Demo using TensorFlow — 尝试实现 Alex Graves 的论文中随机手写生成部分
Neural Turing Machine in TensorFlow — 神经图灵机的 TensorFlow 实现
GoogleNet Convolutional Neural Network Groups Movie Scenes By Setting — 根据对象,地点和其中显示的其他内容来搜索、过滤和描述视频
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow — 单语翻译,从现代英语到莎士比亚,反之亦然
Chatbot — “一个神经会话模型”的实现
Colornet - Neural Network to colorize grayscale images — 通过神经网络给灰度图像着色
Neural Caption Generator with Attention — 图像理解的 Tensorflow 实现
Weakly_detector — “学习深层特征以区分本地化”的 TensorFlow 实现
Dynamic Capacity Networks — “动态容量网络”的实现
HMM in TensorFlow — HMM 的维特比和前向/后向算法的实现
DeepOSM — 使用 OpenStreetMap 功能和卫星图像训练 TensorFlow 神经网络
DQN-tensorflow — 使用 TensorFlow 通过 OpenAI Gym 实现 DeepMind 的“通过深度强化学习的人类水平控制”
Highway Network — “深度网络训练” 的 TensorFlow 实现
Sentence Classification with CNN — TensorFlow 实现“卷积神经网络的句子分类”
End-To-End Memory Networks — 端到端记忆网络的实现
Character-Aware Neural Language Models — 字符感知神经语言模型的 TensorFlow 实现
YOLO TensorFlow ++ — TensorFlow 实现的 “YOLO:实时对象检测”,具有训练和支持在移动设备上实时运行的功能
Wavenet — WaveNet 生成神经网络架构的 TensorFlow 实现,用于生成音频
Mnemonic Descent Method — 助记符下降法:应用于端对端对准的复现过程
本文转自:https://www.oschina.net/
更多内容请 点击查看原文
一、教程
TensorFlow Tutorial 1 — 从基础到更有趣的 TensorFlow 应用
TensorFlow Tutorial 2 — 基于 Google TensorFlow 框架 的深度学习简介,这些教程是 Newmu 的Theano 直接端口
TensorFlow Examples — 给初学者的 TensorFlow 教程和 代码示例
Sungjoon’s TensorFlow-101 — 通过 Python 使用 Jupyter Notebook 编写的 TensorFlow 教程
Terry Um’s TensorFlow Exercises — 从其他 TensorFlow 示例重新创建代码
Installing TensorFlow on Raspberry Pi 3 — TensorFlow 在树莓派上正确编译和运行
Classification on time series — 在 TensorFlow 中使用 LSTM 对手机传感器数据进行递归神经网络分类
二、模型/项目
Show, Attend and Tell — 基于聚焦机制的 图像字幕生成器 (聚焦机制「Attention Mechanism」是当下深度学习前沿热点之一,能够逐个关注输入的不同部分,给出一系列理解)
Neural Style — Neural Style 的实现(Neural Style 是让机器模仿已有画作的绘画风格把一张图片重新绘制的算法)
Pretty Tensor — Pretty Tensor 提供了一个高级构建器 API
Neural Style — Neural Style 的实现
TensorFlow White Paper Notes — 带注释的笔记和 TensorFlow 白皮书的摘要,以及 SVG 图形和文档 链接
NeuralArt — 艺术风格神经算法的实现
使用 TensorFlow 和 PyGame 来深度强化学习乒乓球
Generative Handwriting Demo using TensorFlow — 尝试实现 Alex Graves 的论文中随机手写生成部分
Neural Turing Machine in TensorFlow — 神经图灵机的 TensorFlow 实现
GoogleNet Convolutional Neural Network Groups Movie Scenes By Setting — 根据对象,地点和其中显示的其他内容来搜索、过滤和描述视频
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow — 单语翻译,从现代英语到莎士比亚,反之亦然
Chatbot — “一个神经会话模型”的实现
Colornet - Neural Network to colorize grayscale images — 通过神经网络给灰度图像着色
Neural Caption Generator with Attention — 图像理解的 Tensorflow 实现
Weakly_detector — “学习深层特征以区分本地化”的 TensorFlow 实现
Dynamic Capacity Networks — “动态容量网络”的实现
HMM in TensorFlow — HMM 的维特比和前向/后向算法的实现
DeepOSM — 使用 OpenStreetMap 功能和卫星图像训练 TensorFlow 神经网络
DQN-tensorflow — 使用 TensorFlow 通过 OpenAI Gym 实现 DeepMind 的“通过深度强化学习的人类水平控制”
Highway Network — “深度网络训练” 的 TensorFlow 实现
Sentence Classification with CNN — TensorFlow 实现“卷积神经网络的句子分类”
End-To-End Memory Networks — 端到端记忆网络的实现
Character-Aware Neural Language Models — 字符感知神经语言模型的 TensorFlow 实现
YOLO TensorFlow ++ — TensorFlow 实现的 “YOLO:实时对象检测”,具有训练和支持在移动设备上实时运行的功能
Wavenet — WaveNet 生成神经网络架构的 TensorFlow 实现,用于生成音频
Mnemonic Descent Method — 助记符下降法:应用于端对端对准的复现过程
本文转自:https://www.oschina.net/
更多内容请 点击查看原文