线性代数 听课笔记【上】

  • 画图好累~

  • 域:实数、有限域

向量

  • 向量, x ∈ F n x\in F^n xFn

    在这里插入图片描述

    • F n F^n Fn 向量空间——运算满足线性性

      • 加、数乘

        • 八条公理:
          • u , v , w ∈ V u,v,w\in V u,v,wV V V V 为向量空间, c , d ∈ F c,d\in F c,dF F F F 为域
          • u + v = v + u u+v=v+u u+v=v+u
          • ( u + v ) + w = u + ( v + w (u+v)+w=u+(v+w (u+v)+w=u+(v+w
          • ∃ 0 ∈ F , u + 0 = 0 + u = u \exist 0\in F,u+0=0+u=u ∃0F,u+0=0+u=u
          • ∃ ( − u ) ∈ F , u + ( − u ) = 0 \exist (-u)\in F,u+(-u)=0 (u)F,u+(u)=0
          • 1 u = u 1u=u 1u=u
          • c ( u + v ) = c u + c v c(u+v)=cu+cv c(u+v)=cu+cv
          • ( c + d ) u = c u + d u (c+d)u=cu+du (c+d)u=cu+du
          • c ( d u ) = ( c d ) u c(du)=(cd)u c(du)=(cd)u
            在这里插入图片描述在这里插入图片描述
      • 一些不正常的线性空间

        • V = R , F = Q V=R,F=Q V=R,F=Q,数乘的数是有理数,每个数当成一个向量
        • V = C , F = R V=C,F=R V=C,F=R
        • V = Q , F = Z V=Q,F=Z V=Q,F=Z,不是线性空间,因为 Z Z Z 不是域( 2 2 2 在, 1 2 \frac 1 2 21 不在)
        • [ a , b ] , V = C [ a , b ] , F = R [a,b],V=C[a,b],F=R [a,b],V=C[a,b],F=R

矩阵

矩阵 A ∈ F n × m A\in F^{n\times m} AFn×m a i , j ∈ F a_{i,j}\in F ai,jF

矩阵代表的是线性变换

  • 矩阵乘向量, A ∈ F n × m , x ∈ F m A\in F^{n\times m},x\in F^m AFn×m,xFm,要定义一个运算 A x Ax Ax。把 F m − → F n F^m-\to F^n FmFn,这是一个线性变换。
线性变换
  • 线性变换性质(2个):
  • f : v → w f:v\to w f:vw v , w v,w v,w 线性空间( u , v ∈ V u,v\in V u,vV c ∈ F c\in F cF), f f f 为线性变换
    f ( u → v ) = f ( u ) + f ( v ) f(u\to v)=f(u)+f(v) f(uv)=f(u)+f(v)
    • f ( c u ) = c f ( u ) f(cu)=cf(u) f(cu)=cf(u)

在这里插入图片描述

  • A x = y Ax=y Ax=y,即 y i = ∑ j a i , j x j y_i=\sum_j a_{i,j}x_j yi=jai,jxj
矩阵乘矩阵
  • 线性变换的复合。 A , B A,B A,B 矩阵,希望定义 ( A B ) = C (AB)=C (AB)=C C C C 也为矩阵。且对于 ∀ x ∈ F k \forall x\in F^k xFk,有 C x = A ( B x ) C_x=A(Bx) Cx=A(Bx)(相当于能做两次线性变换)

  • 线性变换的复合依然是一个线性变换。 f , g f,g f,g 为线性变换, ( f ∘ g ) ( x ) = f ( g ( x ) ) (f\circ g)(x)=f(g(x)) (fg)(x)=f(g(x))

  • f ( g ( u + v ) ) = f ( g ( u ) + g ( v ) ) = f ( g ( u ) ) + f ( g ( v ) ) f(g(u+v))=f(g(u)+g(v))=f(g(u))+f(g(v)) f(g(u+v))=f(g(u)+g(v))=f(g(u))+f(g(v))

  • f ( g ( c u ) ) = c f ( g ( u ) ) f(g(cu))=cf(g(u)) f(g(cu))=cf(g(u))

  • A ∈ F n × m A\in F^{n\times m} AFn×m F n → F m F^n\to F^m FnFm B x ∈ F m Bx\in F^m BxFm,则 B B B F k → F m F^k\to F^m FkFm,即 B ∈ F m × k B\in F^{m\times k} BFm×k。则 C : F k → F m → F n C:F^k\to F^m\to F^n C:FkFmFn,因此 C C C F n × k F^{n\times k} Fn×k
    在这里插入图片描述

  • C i , j = ∑ k a i , k b k , j C_{i,j}=\sum_k a_{i,k}b_{k,j} Ci,j=kai,kbk,j

  • 矩阵乘法枚举顺序(代码): i , k , j i,k,j i,k,j矩阵乘法提速!

矩阵转置
  • T T T(transpose)

  • ( A T ) i , j = A j , i (A^T)_{i,j}=A_{j,i} (AT)i,j=Aj,i
    在这里插入图片描述

  • A T A A^TA ATA A A T AA^T AAT 特判有意义!

  • 求转置:直接转即可。

方阵

在这里插入图片描述

  • A A A 可以乘自己,即 A n A^n An 有意义
单位阵 I I I

在这里插入图片描述

  • I x = x Ix=x Ix=x
  • A I x = A x AIx=Ax AIx=Ax A I = A AI=A AI=A I A = A IA=A IA=A

线性独立

向量线性独立
  • 定义 n n n 个向量 { v 1 , v 2 , … v n } \{v_1,v_2,\dots v_n\} {v1,v2,vn} 线性独立。不存在一个 i i i 满足 v i ∑ j ≠ i v i v j v_i\sum_{j\neq i}v_iv_j vij=ivivj
  • 一组向量的张成:span ( { v 1 , v 2 , … v n } \{v_1,v_2,\dots v_n\} {v1,v2,vn}) = { v ∣ α 1 v 1 + α 2 v 2 + α 3 v 3 + … α n v n } =\{v|\alpha_1v_1+\alpha_2v_2+\alpha_3v_3+\dots\alpha_nv_n\} ={vα1v1+α2v2+α3v3+αnvn}(线性空间)
    在这里插入图片描述
  • 线性空间的基 B B B:它的所有线性组合能表示所有元素。即一组线性独立,张成 V V V 的向量集。
  • 线性空间的维度: dim ⁡ ( V ) = c a r d ( B ) \dim(V)=card(B) dim(V)=card(B)
  • dim ⁡ ( F n ) = n \dim(F^n)=n dim(Fn)=n
  • 以上都是指有限集的线性独立
  • 无线集合线性独立
  • 定义:所有有限子集都线性独立
  • 张成:所有有限子集的并
  • 例子: V = R , F = Q V=R,F=Q V=R,F=Q,它的维度不是有限的。思考是多少维的?维度和实数个数是一样的。
(线性)子空间 V V V
  • W ⊆ V W\subseteq V WV W W W 也是线性空间。
  • 0 ∈ W 0\in W 0W W ∩ V = W W\cap V=W WV=W
  • W 1 ⊆ V , W 2 ⊆ V W_1\subseteq V,W_2\subseteq V W1V,W2V,则 W 1 ∩ W 2 W_1\cap W_2 W1W2 也是(线性空间的交为线性空间可以直接代入验证)
  • 矩阵——列空间: 看成 m m m 列,每列为一个向量还是线性空间(忘了)
  • 行空间同理
  • 矩阵的秩rank:列空间的维度
  • 满秩矩阵:方阵。秩=行数
    A A A 满秩的充要条件 A x = 0 Ax=0 Ax=0,则 x = 0 x=0 x=0
  • r a n k ( A + B ) ≤ r a n k ( A ) + r a n k ( B ) rank(A+B)\le rank(A)+rank(B) rank(A+B)rank(A)+rank(B)(矩阵加对矩阵秩的变化很大)
逆矩阵
  • 矩阵线性变换的逆变换
  • A − 1 A^{-1} A1,即 A x = y → A − 1 y = x A_x=y\to A^{-1}y=x Ax=yA1y=x,即 A A − 1 x = x AA^{-1}x=x AA1x=x,即 A A − 1 = I , A − 1 A = I AA^{-1}=I,A^{-1}A=I AA1=I,A1A=I
  • 逆变换必然存在,所以逆矩阵必然存在吗?
  • 可逆矩阵 = 满秩矩阵,即 r a n k ( A ) = n , A ∈ F n × m rank(A)=n,A\in F^{n\times m} rank(A)=n,AFn×m
  • 可逆:定义域和值域一样(线性的),一定是方阵
  • A x ∈ A 的列空间 A_x\in A\text{的列空间} AxA的列空间。也就是 dim ⁡ ( A 的列空间 ) = dim ⁡ ( x 所属空间的维度 ) \dim (A\text{的列空间})=\dim (x\text{所属空间的维度}) dim(A的列空间)=dim(x所属空间的维度)
  • 矩阵求逆:解方程。 A A − 1 = I AA^{-1}=I AA1=I,高斯消元法

行变换

  1. 交换行
  2. 一行乘一个数
  3. 一行加上一个数
  • 意义: A x = y A_x=y Ax=y

在这里插入图片描述

化为特殊形式,得原方程的解。

  • A − 1 A^{-1} A1:
    在这里插入图片描述

  • 日常生活中求逆

  • CF1070L:bitset+优化

  • CF963E:主元法。手动消一些元

行列式

  • det ⁡ ( A ) \det(A) det(A),把方阵变成一个数。 det ⁡ ( A ) = ∑ p ( − 1 ) δ ( p ) ∏ i − 1 n a i , p i \det(A)=\sum_p(-1)^{\delta(p)}\prod_{i-1}^na_{i,p_i} det(A)=p(1)δ(p)i1nai,pi。(其中 p p p 为排列, δ ( p ) \delta(p) δ(p) 为逆序对个数)

  • 性质

    • det ⁡ ( I ) = 1 \det(I)=1 det(I)=1
    • 交换两行: det ⁡ × = − 1 \det \times=-1 det×=1
    • 行乘 c c c det ⁡ × = c \det \times=c det×=c
    • 一行加另一行: det ⁡ \det det 不变。
  • 所以可以高斯消元算了。
    在这里插入图片描述

  • 矩阵满秩:行列式不为0。

  • det ⁡ ( A B ) = det ⁡ A det ⁡ B \det(AB)=\det A\det B det(AB)=detAdetB

行列式的应用

矩阵树定理(Matrix tree)
  • 求一个图的生成树个数

  • Kirchhoff矩阵 K = D A K=DA K=DA D D D 为度数矩阵(只有对角线上有数), A A A 为邻接矩阵(这东西应用原不止矩阵树定理,机器学习、物理领域)

  • 性质1: det ⁡ K = 0 \det K=0 detK=0,即不满秩。( A A A 满秩当且仅当, ∀ x ≠ 0 \forall x\neq 0 x=0,都有 A x ≠ 0 A_x\neq 0 Ax=0)。所以 K 1 = 0 K1=0 K1=0

  • 性质2: K K K 的所有代数余子式相同。

    • 运用性质:所有列的和为0。
      在这里插入图片描述
  • 事实上, K K K 的代数余子式 = 原图的生成树个数

  • 应用:

    • 树的边权积的和。邻接矩阵变邻接边权矩阵,度数矩阵同理。
    • 所有边权和的和(省选原题P6624)。边权和为另一个形式的边权积。 w i ′ = 1 + w x w_i'=1+w_x wi=1+wx w 1 ′ × w 2 ′ = ( 1 + w 1 k ) ( 1 + w 2 k ) = 1 + ( w 1 + w 2 ) x + w 1 w 2 x 2 = …   m o d   x 2 = 1 + ( w 1 + w 2 ) x w_1'\times w_2'=(1+w_1k)(1+w_2k)=1+(w_1+w_2)x+w_1w_2x^2=\dots\bmod x^2=1+(w_1+w_2)x w1×w2=(1+w1k)(1+w2k)=1+(w1+w2)x+w1w2x2=modx2=1+(w1+w2)x
    • 本质: A ∈ F n × n A\in F^{n\times n} AFn×n,现在把 F F F 变成一个多项式了。
    • CF578F
LGV引理

在这里插入图片描述

定义矩阵 M M M。其中 a i , j a_{i,j} ai,j 表示从 A i A_i Ai B j B_j Bj 的路径数。

det ⁡ M = ∑ p ( − 1 ) δ ( p ) ∑ 从Ai到Bj的n条不交路径方案数 \det M=\sum_p(-1)^{\delta(p)}\sum\text{从Ai到Bj的n条不交路径方案数} detM=p(1)δ(p)AiBjn条不交路径方案数(不经过同一个点)。LGV引理是把不交这个条件加上去。

假设交了:

在这里插入图片描述

两种方案抵消了。

  • P7736 板子题
  • Gym 102978A
  • 10
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值