线性代数 听课笔记【下】

矩阵“特征”相关的东西

矩阵特征向量和特征值

特征向量、特征值:成对出现,相对而言

非零向量 x x x,满足 A x = λ x Ax=\lambda x Ax=λx A A A 为方阵(相当于是线性变换),$\lambda $ 为数。则称 x x x 为一个特征向量, λ \lambda λ 为一个特征值。

上面的等价条件: A x = λ I x Ax=\lambda Ix Ax=λIx,即 A x − λ I x = 0 , ( A − λ I ) x = 0 Ax-\lambda Ix=0,(A-\lambda I)x=0 AxλIx=0,(AλI)x=0。因为 x x x 非0,所以 det ⁡ ( A − λ I ) = 0 \det (A-\lambda I)=0 det(AλI)=0

所以求特征值等价于求解 det ⁡ ( A − λ I ) = 0 \det(A-\lambda I)=0 det(AλI)=0 的解。

特征多项式

P A = det ⁡ ( A − λ I ) P_A=\det(A-\lambda I) PA=det(AλI),把 λ \lambda λ 看成一个变量。(关于 λ \lambda λ 的一个 n n n 次多项式, n n n 的方阵的行/列数)

举例:

在这里插入图片描述

性质:

  1. [ λ n ] P A = ( − 1 ) n [\lambda^n]P_A=(-1)^n [λn]PA=(1)n。(因为每个 λ \lambda λ 都去到,所以只能取对角线了)
  2. [ λ n − 1 ] P A = ( − 1 ) n − 1 T r ( A ) [\lambda^{n-1}]P_A=(-1)^{n-1}Tr(A) [λn1]PA=(1)n1Tr(A)
  3. [ λ 0 ] P A = det ⁡ A [\lambda^0]P_A=\det A [λ0]PA=detA

特征值:特征多项式的根。

F F F 是一个代数闭域(即 ∀ \forall 多项式 f ( x ) f(x) f(x) ∃ x ∈ F \exist x\in F xF 使 f ( x ) = 0 f(x)=0 f(x)=0),则 P A = ( λ 1 − λ ) ( λ 2 − λ ) … ( λ n − λ ) P_A=(\lambda_1-\lambda)(\lambda_2-\lambda)\dots(\lambda_n-\lambda) PA=(λ1λ)(λ2λ)(λnλ) x i x_i xi P A P_A PA 的根。

常见代数闭域:复数域。(实数域不是,有限域也不是)

λ i \lambda_i λi 作为 P A P_A PA 的根的重数,就称作代数重数。(相对的,几何
重数有忘了)

特征值的性质: λ 1 , λ 2 , … , λ n \lambda_1,\lambda_2,\dots,\lambda_n λ1,λ2,,λn

  1. 所有特征值的和为 ∑ i λ i = T r ( A ) \sum_i\lambda_i=Tr(A) iλi=Tr(A)
  2. ∏ i λ i = det ⁡ A \prod_i\lambda_i=\det A iλi=detA

所以二阶方阵有和有乘积就可以求特征值。

举例:

在这里插入图片描述

求特征向量:解方程 ( A − λ I ) x i = 0 (A-\lambda I)x_i=0 (AλI)xi=0

谱范数、谱分解

谱范数: A T A A^TA ATA 的最大特征是的平方根( A A A 的最大奇异)。即线性变换可能能变多大。(谱范数大就大,小就小)

谱分解、对角化:一些方阵有 n n n 个线性无关的特征向量 v 1 , v 2 … v n v_1,v_2\dots v_n v1,v2vn,对应的特征值是 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn

首先有 A v i = λ v i Av_i=\lambda v_i Avi=λvi,写在一起记做 Q = ( v 1 , v 2 … v n ) Q=(v_1,v_2\dots v_n) Q=(v1,v2vn)

在这里插入图片描述

Λ \Lambda Λ 为:
在这里插入图片描述

A Q = Q Λ AQ=Q\Lambda AQ=QΛ,所以 A = Q Λ Q − 1 A=Q\Lambda Q^{-1} A=QΛQ1,这就叫对角化。

A = Q Λ Q − 1 = . . . = Q Λ k Q − 1 A=Q\Lambda Q^{-1}=...=Q\Lambda^kQ^{-1} A=QΛQ1=...=QΛkQ1

在这里插入图片描述

exp ⁡ ( A ) \exp(A) exp(A),也可以用对角化很方便表示 。

能对角化的矩阵:

  1. n n n 个不同特征值的矩阵
  2. 实对称矩阵有 n n n 个实特征值。(即特征值全是实数)

不能对角化的矩阵:

  1. 幂零矩阵。 A ≠ 0 A\neq 0 A=0,若 A k = 0 A^k=0 Ak=0,则 A A A 不能对角化
    经典例子(可能有点丑):在这里插入图片描述

可以反证: A k = Q Λ k Q − 1 A^k=Q\Lambda ^kQ^{-1} Ak=QΛkQ1,只能为 Λ k = 0 \Lambda^k=0 Λk=0,即 A = 0 A=0 A=0

在这里插入图片描述

线性递推

斐波那契的通项公式

F i + 1 = F i + F i − 1 F_{i+1}=F_i+F_{i-1} Fi+1=Fi+Fi1,矩阵形式:在这里插入图片描述

F i + k F_{i+k} Fi+k,则为 在这里插入图片描述

首先可以求出特征多项式为:

在这里插入图片描述

所以对角矩阵为:

在这里插入图片描述

.

马尔科夫矩阵Markov矩阵

A 1 = 1 , A ≥ 0 A1=1,A\ge 0 A1=1,A0(也就是随机矩阵)
在这里插入图片描述

性质:

  1. A A A 有特征值 λ = 1 \lambda=1 λ=1
  2. 事实上:
    1. A A A 的所有(复)特征值的模长 ≤ 1 \le 1 1。(Gershgorin circle theorem)
    2. A A A 表示的图强连通。则 A A A 的 1-特征空间 维度为1(注: A A A λ − \lambda- λ 特征空间为满足 ( A − I λ ) x = 0 (A-I\lambda)x=0 (AIλ)x=0 所有维度为1的 x x x
    3. A A A 表示的图强连通。则 A A A 的 1-左特征空间 有只含正元素的向量。(本质为存在一个概率分布,最后有能够回来)(还有个叫 Perron-Fnbenious theorem)
      在这里插入图片描述 4. 若 A A A 还非周期, ∃ p , A p \exists p, A^p p,Ap 只含正元素。
      更厉害的结论: ∀ x ≥ 0 \forall x\ge 0 x0 ∑ x i = 1 \sum x_i=1 xi=1,则 lim ⁡ x → + ∞ x T A n = r T \lim_{x\to+\infty}x^TA^n=r^T limx+xTAn=rT r T r^T rT 为确定)

初始 x ∈ ( 0 , 1 ) x\in(0,1) x(0,1),目标赚到1。每次可以下注, p p p 概率赢 2 y 2y 2y y y y 为下注), 1 − p 1-p 1p 失去 y y y,最优策略下赢的概率(取模)。
加强:每次下注比上次下注要下得更多

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值