【完全复现】基于改进粒子群算法的微电网多目标优化调度(含matlab代码)

目录

主要内容   

  部分代码   

  结果一览   

下载链接


主要内容   

程序完全复现文献模型《基于改进粒子群算法的微电网多目标优化调度》,以微电网系统运行成本和环境保护成本为目标函数,建立了并网方式下的微网多目标优化调度模型,通过改进粒子群算法和原始粒子群算法进行对比,验证改进方法的优越性。虽然标题是多目标优化算法,实质指的是权值多目标,即通过不同目标权值相加的方式转化为单目标进行求解,程序采用matlab编写,模块化编程,方便学习!

  部分代码   

%% 基于改进粒子群算法的微电网多目标优化调度  
% 变量定义如下:
​
% 决策变量:柴油发电机 微型燃气轮机 联络线 储能
% x=[DE(1*24), MT(1*24), Grid(1*24), Bess(1*24)]; 
​
clc;
clear;
close all;
tic
%获取数据
%定义全局变量
global P_load; %电负荷
global Pwt;%风电
global Ppv;%光伏
global buy_price;
global sell_price;
global f1;
global f2;
data=xlsread('mopso_data');
P_load=data(:,1);
Ppv=data(:,2);
Pwt=data(:,3);
buy_price=data(:,4);
sell_price=data(:,5);
%% 算法参数
parameter;%基本参数
​
nVar=4*24;              % 变量数量
VarMin=[ones(1,24)*DEMin, ones(1,24)*MTMin, ...
                 ones(1,24)*GridMin, ones(1,24)*BESSMax_char]; % 变量最小值
VarMax=[ones(1,24)*DEMax, ones(1,24)*MTMax, ...
                 ones(1,24)*GridMax, ones(1,24)*BESSMax_dischar]; % 变量上限
MaxIt=500;      % Maximum Number of Iterations
nPop=200;        % Population Size (Swarm Size)
​
%% 计算
​
[ bestPosition, fitValue, BestCost ] = ...
PSOFUN( @fun_objective,nVar,VarMin,VarMax,MaxIt,nPop );
​

  结果一览   

下载链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电力程序小学童

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值