论文复现——Retinex-Based Signal Enhancement for Image Dark Regions

本文介绍了Retinex模型及其在图像增强中的应用,重点关注线性多尺度增强(LinearSSR)和双边滤波的结合。首先,通过初始化二进制地图Mlow和Mhigh来区分图像的暗区和亮区。接着,使用双边滤波器替代线性滤波,以改进图像处理效果。在处理过程中,根据像素值和预设阈值Klow、Khigh更新二进制地图,并据此调整图像的亮度。最后,根据更新后的二进制地图和特定公式计算得到增强后的图像。这种方法旨在提高图像的视觉质量和细节表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Retinex模型:参考链接:https://www.cnblogs.com/sleepwalker/p/3676600.html
Linear SSR:线性多尺度增强
Bilateral filter:参考链接:https://blog.csdn.net/l_eop/article/details/81812277

论文中的方法:利用双边滤波替换线性滤波,实现改进。
总体来说,分为两大步。
[Step 1]

  1. For each pixel at coordinates (x, y), 0 ≤ x < W,
    0 ≤ y < H,
    a) Initialize the binary map Mlow(x, y) indicating
    the dark regions as Mlow(x, y) ← 1.
    b) Initialize the binary map Mhigh(x, y) indicating
    the bright regions as Mhigh(x, y) ← 1.
  2. When the group of pixels affected by a pixel at
    coordinates (x, y) in the filter processing is expressed
    by
    R(x,y) = {(m, n)| x − w ≤ m ≤ x + w,
    y − w ≤ n ≤ y + w }, (19)
    for each pixel at coordinates (x, y), 0 ≤ x < W,
    0 ≤ y < H,
    a) If Y (x, y) > Klow,then set Mlow(m, n) ← 0,
    (m, n) ∈ R(x,y)
    b) If Y (x, y) < Khigh,then set Mhigh(m, n) ← 0,
    (m, n) ∈ R(x,y)
    .
    [Step 2]
    For each pixel at coordinates (x, y), 0 ≤ x < W,
    0 ≤ y < H,
    a) If Mlow(x, y) = 1, set I′i(x, y) = α · Ii(x, y).
    b) Otherwise, if Mhigh(x, y) = 1, set I′i(x, y) =Ii(x, y).
    c) Otherwise, calculate L(x, y) from (7) and (8),
    and obtain I′i(x, y) from (14).

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值