区间估计的一道例题

区间估计的一道例题

为了提高可靠性和测量精度,飞机通常安装了若干个高度仪。设飞机实际飞行高度为 μ \mu μ时每个高度仪时测量值 X ∼ N ( μ , σ 2 ) X\sim\mathcal N(\mu,\sigma^2) XN(μ,σ2) σ = 8 m \sigma=8m σ=8m,而飞机仪表上显示的飞行高度是所有的高度测量值的平均值。在置信水平 1 1 1- α = 0.98 \alpha=0.98 α=0.98下,求解下列问题:
(1)若要保证飞行仪表上显示的飞信高度的绝对误差不超过12m,问飞机上至少安装多少个高度仪?
(2)若飞机装有4个高度仪,飞行仪表上显示的飞行高度是9813m,问飞机实际飞行在什么高度范围?

关于区间估计和本题的几点想法:
首先,就本题说说区间估计到底是干什么。首先要建立“概率”的思想,也就是没有100%,只有“大概率”是怎样,这个“大概率”就是置信水平,本题给出的大概率是98%。所以第一问中什么叫”保证飞行仪表上显示的飞行高度的绝对误差不超过12m“,这个“保证”的意思就不是100%,而是飞行高度的绝对误差不超过12m的概率大于98%,也就是说 P { ∣ X ˉ − μ ∣ &lt; 12 } ≥ 0.98 P\{|\bar X-\mu|&lt;12\}\geq0.98 P{Xˉμ<12}0.98。第二问问到”飞机实际飞行在什么高度范围“,求的是是飞机在这个高度范围内的概率为98%的高度区间。

其次从解题思路上,区间估计,或者具体一些,与正态分布有关的参数估计(这里包含区间估计和点估计),都与 X ˉ \bar X Xˉ σ 2 \sigma^2 σ2有关。本题显然是只与 X ˉ \bar X Xˉ有关, σ \sigma σ则已经给出。利用 X ˉ − μ σ / n ∼ N ( 0 , 1 ) \frac{\bar X-\mu}{\sigma/\sqrt{n}}\sim\mathcal N(0,1) σ/n XˉμN(0,1)的分布,可以得到与置信水平有关的不等式,如式(2)与式(3),该不等式在这类题目中的地位就像中学解题时列出的方程组一样,是整个解题的核心,其余就是计算了。用“”的方法得到这样一个不等式的核心在于式(2)与式(1)、式(3)与式(4)的等价性。也就是说对于第一问,真正符合应用题实际所列出的式子是(1),由于(2)大括号中的不等式与式(1)完全相同(由式(1)变形得到),因此可以由具备 N ( 0 , 1 ) \mathcal N(0,1) N(0,1)分布特点的式(2)去求解式(1)中的参数。也就是说式(2)是由式(1)变形得到,目的是凑成具备 N ( 0 , 1 ) \mathcal N(0,1) N(0,1)分布的式子,进而可由式(2)解得式(1)的参数。对于第二问,我们求解的目的是得到式(4),这是在看到问题时就出现在脑海中的形式。而我们去寻找与 N ( 0 , 1 ) \mathcal N(0,1) N(0,1)分布有关的式(3),并且由此化简成式(4)。也就是说求解的目标是式(4),而它是由具备正态分布特点的式(3)化简而成,它与式(3)完全等价。之所以强调这一点,目的是在解题过程中应时刻注意“出发点”,本题的出发点是式(1)和式(4)。很多人解题时只知道糊里糊涂地去列式(2)或式(3),这有什么意义呢?你在解决什么问题呢?式(2)或式(3)是成的,它的出发点是前者。

解:
假设有n个高度仪,高度测量值分别为(n个样本): X 1 , X 2 , . . . . . . , X n X_1,X_2,......,X_n X1,X2,......,Xn
仪表上显示的飞行高度为(样本均值): X ˉ = ∑ i = 1 n X i \bar X=\sum_{i=1}^n X_i Xˉ=i=1nXi.其中, X ˉ ∼ N ( μ , σ 2 n ) \bar X\sim\mathcal N(\mu,\frac{\sigma^2}{n}) XˉN(μ,nσ2)
问题重述:
P { ∣ X ˉ − μ ∣ &lt; 12 } ≥ 0.98 P\{|\bar X-\mu|&lt;12\}\geq0.98 P{Xˉμ<12}0.98,至少需要几个高度仪?
也就是 P { − 12 &lt; X ˉ − μ &lt; 12 } ≥ 0.98 ( 1 ) P\{-12&lt;\bar X-\mu&lt;12\}\geq0.98(1) P{12<Xˉμ<12}0.981
将上述不等式凑成 X ˉ − μ σ / n ∼ N ( 0 , 1 ) \frac{\bar X-\mu}{\sigma/\sqrt{n}}\sim\mathcal N(0,1) σ/n XˉμN(0,1)的形式
P { − 12 σ / n &lt; X ˉ − μ σ / n &lt; 12 σ / n } ≥ 0.98 ( 2 ) P\{\frac{-12}{\sigma/\sqrt{n}}&lt;\frac{\bar X-\mu}{\sigma/\sqrt{n}}&lt;\frac{12}{\sigma/\sqrt{n}}\}\geq0.98(2) P{σ/n 12<σ/n Xˉμ<σ/n 12}0.982
因此 { − 12 σ / n &lt; u α 2 = u 0.01 12 σ / n &gt; u 1 − α 2 = u 0.99 \begin{cases}\frac{-12}{\sigma/\sqrt{n}}&lt;u_{\frac{\alpha}{2}}=u_{0.01}\\\frac{12}{\sigma/\sqrt{n}}&gt;u_{1-\frac{\alpha}{2}}=u_{0.99}\end{cases} {σ/n 12<u2α=u0.01σ/n 12>u12α=u0.99
求得: n &gt; σ 2 ⋅ u 0.99 2 144 n&gt;\sigma^2\cdot\frac{u_{0.99}^2}{144} n>σ2144u0.992
(2)已知 X ˉ = 9813 m \bar X=9813m Xˉ=9813m,且 X ˉ ∼ N ( μ , σ 2 4 ) \bar X\sim\mathcal N(\mu,\frac{\sigma^2}{4}) XˉN(μ,4σ2),即 X ˉ − μ σ / 2 ∼ N ( 0 , 1 ) \frac{\bar X-\mu}{\sigma/2}\sim\mathcal N(0,1) σ/2XˉμN(0,1)
由置信水平 1 1 1- α = 0.98 \alpha=0.98 α=0.98,得置信区间: u 0.01 &lt; X ˉ − μ σ / 2 &lt; u 0.99 ( 3 ) u_{0.01}&lt;\frac{\bar X-\mu}{\sigma/2}&lt;u_{0.99}(3) u0.01<σ/2Xˉμ<u0.993整理得
X ˉ − u 0.99 ⋅ σ 2 &lt; μ &lt; X ˉ − u 0.01 ⋅ σ 2 \bar{X}-u_{0.99}\cdot\frac{\sigma}{2}&lt;\mu&lt;\bar{X}-u_{0.01}\cdot\frac{\sigma}{2} Xˉu0.992σ<μ<Xˉu0.012σ
X ˉ − u 0.99 ⋅ σ 2 &lt; μ &lt; X ˉ + u 0.99 ⋅ σ 2 ( 4 ) \bar{X}-u_{0.99}\cdot\frac{\sigma}{2}&lt;\mu&lt;\bar{X}+u_{0.99}\cdot\frac{\sigma}{2}(4) Xˉu0.992σ<μ<Xˉ+u0.992σ4
飞机实际飞行高度的置信区间为 ( X ˉ − u 0.99 ⋅ σ 2 , X ˉ + u 0.99 ⋅ σ 2 ) (\bar{X}-u_{0.99}\cdot\frac{\sigma}{2},\bar{X}+u_{0.99}\cdot\frac{\sigma}{2}) (Xˉu0.992σ,Xˉ+u0.992σ)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值