筹码分布算法

初始成本分布=原始股本,分布在上市价格

平均成本分布=原始股本/(当日价格最高-当日价格最低)*换手率*衰减系数

衰减系数=1

例如:某股票600xxx,第一天上市价格=7.8,股本3000万,价格在7.8-8.6之间,换手率=0.2;那么,该股票的

初始成本分布=3000万分布在7.8上;

8.4的平均成本分布=3000/(8.6-8.7)*0.2*1.


从当前角度看成本分布:

移动成本分布=当日成本分布*换手率*衰减系数+历史成本分布*(1-换手率*衰减系数)

同理,上面的股票,7.8的移动成本分布=3000/(8.6-8.7)*0.2*1+3000*(1-0.2*1).

### Python 实现筹码算法 筹码分布在量化交易中用于描述不同价位上的持股情况,能够帮助投资者了解市场的买卖力量对比。通过Python可以实现筹码分布的计算和可视化。 #### 使用Pandas处理股票数据并绘制筹码分布图 ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt def calculate_chips_distribution(data): """ 计算筹码分布 参数: data (DataFrame): 股票历史价格数据框,包含'Close', 'Volume' 返回: DataFrame: 各价位对应的成交量占比 """ # 获取收盘价序列 close_prices = data['Close'].values volumes = data['Volume'].values # 定义价格区间范围 price_range = np.linspace(min(close_prices), max(close_prices), num=100) # 初始化筹码分布数组 chips_dist = [] for i in range(len(price_range)-1): lower_bound = price_range[i] upper_bound = price_range[i+1] mask = ((close_prices >= lower_bound) & (close_prices < upper_bound)) total_volume_in_bin = sum(volumes[mask]) chips_dist.append(total_volume_in_bin / sum(volumes)) result_df = pd.DataFrame({ "Price": price_range[:-1], "Chips_Distribution": chips_dist }) return result_df # 假设已有一个名为data的数据框存储了某只股票的历史行情记录 chips_result = calculate_chips_distribution(data) plt.figure(figsize=(8, 6)) plt.bar(chips_result["Price"], height=chips_result["Chips_Distribution"]) plt.title('Stock Chips Distribution') plt.xlabel('Price Level') plt.ylabel('Proportion of Total Volume (%)') plt.show() ``` 此段代码实现了基本的筹码分布计算逻辑,并将其绘制成柱状图展示出来[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值