注:本文所用到的代码及论文,文章底部有链接,可自行下载
论文部分:

作者开门见山的指出:特征转换和非线性激活——对协同过滤的性能几乎没有贡献。这篇文章也就是对NGCF的模型进行了精简,所以最好先理解前者才更好的理解后者
如果想回顾一下:可以参考图卷积网络在推荐系统中的应用NGCF(Neural Graph Collaborative Filtering)配套pytorch的代码解释_zhao254014的博客-CSDN博客
言归正传,这篇论文前面都在讲这些繁琐的操作对最后的推荐没啥用,然后显示出lightGCN的好处

在LightGCN中,采用了简单的加权和聚合器,放弃了使用特征变换和非线性激活, 同时只聚合连接的邻居,而不集成目标节点本身(即自连接)。

本文介绍了LightGCN模型,它是对NGCF的简化版,通过去除特征变换和非线性激活来提高推荐系统的效率和可读性。论文指出这些操作对性能改善作用不大,并解释了为何只聚合邻居节点而摒弃自连接。LightGCN的实现代码显示,其训练速度比NGCF快一倍,且实现实验结果接近论文指标。文章提供了代码资源链接,便于读者理解和复现。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



