矩阵分析一子空间和特征分解

本文探讨了线性方程组的视角、线性相关与无关的定义及性质,介绍了span、基和子空间的概念。进一步,文章详细阐述了矩阵的四个基本子空间——列空间、零空间、行空间和左零空间,以及它们之间的关系。最后,文章重点讨论了方阵的特征分解,包括特征值、特征向量及其几何意义,以及对称矩阵的对角化和正交基的重要性。
摘要由CSDN通过智能技术生成

线性方程组Ax=b的行视图是超平面,列视图是列向量的线性组合。从这个视角,将矩阵与向量组联系起来了。

5.1 线性相关、线性无关

定义:给定向量组A: a1,a2,...,am a 1 , a 2 , . . . , a m ,如果存在不全为零的数 k1,k2,,...,km k 1 , k 2 , , . . . , k m ,使得 k1a1+k2a2+...+kmam=0 k 1 a 1 + k 2 a 2 + . . . + k m a m = 0 ,则称向量组A是线性相关的,否则称为线性无关的。

定理:向量组 A:ai,i=1,...,m A : a i , i = 1 , . . . , m 线性相关 Ax=0有非零解 R(A)<m R ( A ) < m ;

向量组 A:ai,i=1,...,m A : a i , i = 1 , . . . , m 线性无关 Ax=0有唯一解,即零解 R(A)=m R ( A ) = m ;

向量组的秩等于其最大线性无关向量组中向量个数。

定理:矩阵的秩等于它的列向量组的秩。

定理:如果n维向量组a1,…,ar是一组两两正交的非零向量,那么a1,…,ar线性无关。

定理7:设 ARm×n A ∈ R m × n 的秩 R(A)=r R ( A ) = r ,则n元齐次线性方程组 Ax=0 A x = 0 的解集S的秩 R(S)=nr R ( S ) = n − r 。解集中任意n-r个线性无关解都可构成它的基础解系。

5.2 span,基,子空间

向量组 A:ai,i=1,...,N,aiRm A : a i , i = 1 , . . . , N , a i ∈ R m 线性无关,则可以构成一个子空间S

S=span[a1,...,aN]={ yRm|y=Ni=1kiai} S = s p a n [ a 1 , . . . , a N ] = { y ∈ R m | y = ∑ i = 1 N k i a i }

向量组A称为子空间S的一组基。如果向量组A两两正交( aTiaj=0 a i T a j = 0 ),则称为正交基,如果向量 ai a i 为单位向量,则称为规范正交基。

子空间的基有很多,但是基的秩(即向量个数)是不变的,称为子空间的维度。

从子空间定义可知,子空间一定包含原点(全为0的向量)。

5.2.1 四个基本子空间

1. 列空间 column space

列空间也称为值域或span,用C(A)表示,其中 ARm×n A ∈ R m × n

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值