Bert的pooler_output是什么?

BERT的两个输出

在学习bert的时候,我们知道bert是输出每个token的embeding。但在使用hugging face的bert模型时,发现除了last_hidden_state还多了一个pooler_output输出。

例如:

from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModel.from_pretrained("bert-base-uncased")

inputs = tokenizer("I'm caixunkun. I like singing, dancing, rap and basketball.", return_tensors="pt")
outputs = model(**inputs)

print("last_hidden_state shape:", outputs.last_hidden_state.size())
print("pooler_output shape:", outputs.pooler_output.size())
last_hidden_state shape: torch.Size([1, 20, 768])
pooler_output shape: torch.Size([1, 768])

许多人可能以为pooler_output[CLS]token的embedding,但使用last_hidden_state shape[:, 0]比较后,发现又不是,然后就很奇怪。

Bert的Pooler_output

先说一下结论: pooler_output可以理解成该句子语义的特征向量表示

那它是怎么来的?和[CLS]token的embedding区别在哪?

我们将Bert模型打印一下,会发现最后还有一个BertPooler层,pooler_output就是从这来的。如下所示:

BertModel(
	(embedding): BertEmbeddings(
		....
	)
	(encoder): BertEncoder(
		... # 12层TransformerEncoder
	)
	(pooler): BertPooler(
	    (dense): Linear(in_features=768, out_features=768, bias=True)
	    (activation): Tanh()
	)
)

其中encoder就是将BERT的所有token经过12个TransformerEncoder进行embedding。pooler就是将[CLS]这个token再过一下全连接层+Tanh激活函数,作为该句子的特征向量

我们可以从Bert源码中验证以上结论。在transformers.models.bert.modeling_bert.BertModel.forward方法中这么一行代码:

# sequence_output就是last_hidden_state
# self.pooler就是上面的BertPooler
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

我们再来看看transformers.models.bert.modeling_bert.BertPooler的源码:

class BertPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
		# hidden_states的第一个维度是batch_size。所以用[:, 0]取所有句子的[CLS]的embedding
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output

从上面的源码可以看出,pooler_output 就是[CLS]embedding又经历了一次全连接层的输出。我们可以通过以下代码进行验证:

print("pooler:", model.pooler)
my_pooler_output = model.pooler(outputs.last_hidden_state)
print(my_pooler_output[0, :5])
print(outputs.pooler_output[0, :5])
pooler: BertPooler(
  (dense): Linear(in_features=768, out_features=768, bias=True)
  (activation): Tanh()
)
tensor([-0.8129, -0.6216, -0.9810,  0.8090,  0.9032], grad_fn=<SliceBackward0>)
tensor([-0.8129, -0.6216, -0.9810,  0.8090,  0.9032], grad_fn=<SliceBackward0>)

Bert的Pooler_output的由来

我们知道,BERT的训练包含两个任务:MLM和NSP任务(Next Sentence Prediction)。 对这两个任务不熟悉的朋友可以参考:BERT源码实现与解读(Pytorch)【论文阅读】BERT 两篇文章。

其中MLM就是挖空,然后让bert预测这个空是什么。做该任务是使用token embedding进行预测。

而Next Sentence Prediction就是预测bert接受的两句话是否为一对。例如:窗前明月光,疑是地上霜 为 True,窗前明月光,李白打开窗为False。

所以,NSP任务需要句子的语义信息来预测,但是我们看下源码是怎么做的。transformers.models.bert.modeling_bert.BertForNextSentencePrediction的部分源码如下:

class BertForNextSentencePrediction(BertPreTrainedModel):
	
    def __init__(self, config):
        super().__init__(config)

        self.bert = BertModel(config)
        self.cls = BertOnlyNSPHead(config)	# 这个就是一个 nn.Linear(config.hidden_size, 2)
		...
	
	def forward(...):
		...
		outputs = self.bert(...)
		pooled_output = outputs[1] # 取pooler_output
		seq_relationship_scores = self.cls(pooled_output)	# 使用pooler_ouput送给后续的全连接层进行预测
		...

从上面的源码可以看出,在NSP任务训练时,并不是直接使用[CLS]token的embedding作为句子特征传给后续分类头的,而是使用的是pooler_output。个人原因可能是因为直接使用[CLS]的embedding效果不够好。

但在MLM任务时,是直接使用的是last_hidden_state,有兴趣可以看一下transformers.models.bert.modeling_bert.BertForMaskedLM的源码。

  • 47
    点赞
  • 91
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 12
    评论
### 回答1: 好的,这是一个简单的 BERT 模型结构的 Python 代码: ``` import transformers # 使用 transformers 库中的 BertModel 类初始化模型 model = transformers.BertModel.from_pretrained('bert-base-uncased') # 将输入数据转换为张量 input_ids = torch.tensor(input_ids).unsqueeze(0) # 添加一维,形状为 (batch_size, sequence_length) attention_mask = torch.tensor(attention_mask).unsqueeze(0) # 添加一维,形状为 (batch_size, sequence_length) # 将输入传递给 BERT 模型,并获取输出 output = model(input_ids, attention_mask=attention_mask) # 输出的第一个元素是隐藏层的输出,形状为 (batch_size, sequence_length, hidden_size) # 输出的第二个元素是每个位置的注意力权重,形状为 (batch_size, num_heads, sequence_length, sequence_length) hidden_states, attention_weights = output ``` 请注意,上面的代码仅仅是 BERT 的一部分,要完整地使用 BERT 还需要添加一些其他的层(例如分类层)来进行任务特定的训练和推理。此外,还需要处理输入数据的预处理,例如将文本转换为 BERT 可以处理的形式(即输入 ID 和注意力掩码)。 希望这对你有帮助。 ### 回答2: BERT(Bidirectional Encoder Representations from Transformers)是一种预训练的自然语言处理模型,其基于Transformer结构,在神经网络中实现了双向的编码器。下面是一个使用Python编写的BERT模型结构的示例代码: ```python import torch from transformers import BertModel, BertTokenizer class BERTModel(torch.nn.Module): def __init__(self, pretrained_model_name): super(BERTModel, self).__init__() self.bert = BertModel.from_pretrained(pretrained_model_name) self.tokenizer = BertTokenizer.from_pretrained(pretrained_model_name) self.linear = torch.nn.Linear(768, 2) # 768是BERT模型的输出维度,这里我们假设任务是二分类 def forward(self, input_text): input_ids = self.tokenizer.encode(input_text, add_special_tokens=True) input_ids = torch.tensor(input_ids).unsqueeze(0) # 增加一个batch维度 outputs = self.bert(input_ids) pooled_output = outputs.pooler_output # 获取句子的池化表示 logits = self.linear(pooled_output) return logits # 使用BERT模型进行文本分类 model = BERTModel('bert-base-uncased') input_text = "这是一段需要分类的文本。" logits = model(input_text) print(logits) ``` 以上代码创建了一个名为BERTModel的类,该类继承自torch.nn.Module,其中包含了BERT模型、BERT分词器和一个线性层。forward函数用于前向传播,输入文本经过编码器BERT后,取出句子的池化表示,然后通过线性层得到分类的logits。 ### 回答3: 要使用Python编写BERT模型结构,可以使用PyTorch或TensorFlow等深度学习库来实现。下面是一个使用PyTorch编写的简化版BERT模型结构的示例代码: ```python import torch import torch.nn as nn class BERTModel(nn.Module): def __init__(self, num_classes): super(BERTModel, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_size) self.encoder = nn.TransformerEncoder( nn.TransformerEncoderLayer(d_model=embedding_size, nhead=num_attention_heads), num_layers=num_encoder_layers ) self.fc = nn.Linear(embedding_size, num_classes) def forward(self, input_ids): embedded = self.embedding(input_ids) encoded = self.encoder(embedded) pooled = torch.mean(encoded, dim=1) logits = self.fc(pooled) return logits ``` 这个BERT模型结构包含了词嵌入层、多层Transformer编码器和全连接层。在`__init__`方法中,首先定义了词嵌入层`embedding`,然后使用TransformerEncoder构建了编码器层`encoder`。在`forward`方法中,输入的`input_ids`是一个批次的输入文本的tokenized编码(可以通过tokenizer将文本转为编码),经过embedding和encoder后,使用mean pooling来获得整个文本的表示,并通过全连接层`fc`输出分类结果。 需要注意的是,这只是一个简化版的BERT模型结构,实际的BERT模型结构更加复杂,包含了更多的层和参数。此示例仅用于演示如何使用Python编写BERT模型结构的基本框架。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iioSnail

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值