综述国内外三维视觉测量系统的发展现状

1.1  相关技术综述

二维视觉测量采用单摄像机测量目标在特定平面中的位置,如美国的Adept机器人装配系统、足球机器人等。在二维视觉测量中,摄像机与测量平面之间的距离固定,这使得其应用受到很大的限制[1]

与二维图像信息相比,三维信息能够更全面、真实地反映客观物体,提供更大的信息量。近年来,各种技术应用于三维信息测量中,由此形成了各类三维测量系统。经过几十年发展,三维视觉测量系统已具有较成熟的理论和技术基础,生产实践也不断证明这类系统操作简便、适应性强、精度高[2]

从狭义上讲,三维视觉测量技术即通过计算机分析处理,让计算机不仅具有和人眼一样的视觉感受,而且能够获得人眼所不能直接获得的经过量化的物体参数。

获取空间三维物体的距离信息是三维成像、三维物体重建和计算机辅助设计中最基础的内容,有着广泛的实际应用价值。进入二十世纪90年代以来,各种硬件和软件技术的发展使得人们不仅能处理二维图像而且开始处理三维图像,许多能获取三维图像的设备和处理分析三维图像的系统研制成功,大大扩展了人们对客观世界的认识[3]。光学三维形貌测量具有非接触、高精度、高效率的特点,并且在科研、医学诊断、工程设计、刑事侦查现场痕迹分析、自动在线检测、质量控制、机器人及许多生产过程中得到越来越广泛的应用。为此,国际光学学会在1994年以信息光学的前沿为主题的年会上,首次将光学三维测量列为信息光学前沿的7个主要领域和方向之一[4]

80年代初,Marr从信息处理的角度综合了图像处理、心理物理学、神经生理学以及临床病学的研究成果,提出了第一个较为完善的视觉系统框架,称之为Marr视觉理论[3]。该理论从信息处理系统的角度出发,将系统的研究分为三个层次[3]:计算理论层次、表达与算法层次、硬件实现层次。

从视觉计算理论出发,将系统分为自下而上的三个阶段[3],即视觉信息从最初的原始数据(二维图像数据)到最终对三维环境的表达经历了三个阶段的处理。第一阶段构成所谓“要素图”或“基元图”,基元图由二维图像的边缘点、直线段、曲线、顶点、纹理等基本几何元素或者特征组成;第二阶段,Marr称为对环境的2.5维描述,这是一种形象的说法,意即部分的、不完整的三维信息描述,用“计算”的语言来讲,就是重建三维物体在观察者为中心的坐标系下的三维形状与位置;第三阶段,即三维阶段,是对物体的完整三维描述,即物体本身某一固定坐标系下的描述。

从低层次的处理而言,我们最为关注的是图像数据在计算机中的表达,即计算机如何理解和区分“景物”。在高层,我们希望能够通过高性能的计算机,求解出人眼无法实现的功能,比如精确地识别、定位以及参数的测量等。

 

图像的预处理:

图像预处理是最低层的操作,输入输出都是亮度图像,需要指出的是,图像的预处理不会增加新的信息量[5]。主要的图像预处理按照在计算新像素亮度时所使用的像素领域的大小分为四类:第一类:像素亮度变换;第二类:几何变换;第三类:局部预处理方法;第四类:图像复原技术。

图像平滑是指用于突出图像的宽大区域低频成分、主干部分或抑制图像噪声和干扰高频成分,使图像亮度平缓渐变,减小突变梯度,改善图像质量的图像处理方法。图像平滑的方法包括[5]:插值法、线性平滑法、卷积法等。

平滑后的图像需要进行边缘检测[5]。两个具有不同灰度值的相邻区域之间总存在边缘,边缘是灰度值不连续的表现。由于边缘是图像上灰度变化最剧烈的地方,传统的边缘检测即利用这一特点,对图像各个像素点进行微分或求二阶微分来确定边缘像素点。常用的边缘检测模板有Canny算子、Laplacian算子、Roberts算子、Sobel算子,以及Laplacian of GaussianLoG)算子等[5]

图像分割[5]是对图像预处理后的图像数据进行分析之前,最重要的步骤之一,它的主要目标是将图像划分为与其中含有的真实世界的物体或区域有强相关性的组成部分。通常,可将图像分割分为三类:第一类,是有关图像或图像部分的全局知识,这种知识一般由图像特征的直方图来表达;第二类,是基于边缘的分割;而第三类是基于区域的分割,在边缘检测或区域增长中可以使用多种不同的特征,例如亮度、纹理、速度场等。

 

摄像机的标定:

对于摄像机标定,目前已经提出了很多种方法,摄像机标定的理论问题已得到较好的解决。对摄像机标定的研究来说,工作集中在如何针对具体的实际应用问题,采用特定的简便、实用、快速、准确的标定方法。

传统的摄像机标定起源于摄影探测学中的校正。在摄影测量学中所实用的方法是数学解析分析的方法,在标定过程中通常要利用数学方法对从数字图像中获得的数据进行处理。通过数学处理手段,摄像机标定提供了专业测量摄像机与非量测摄像机的联系。在1889年到1951年之间,发表了近百篇与相机校正有关的论文,Brown对此进行了总结并给出了文件列表[6]

20世纪50年代到70年代是镜头校正技术发展的黄金时期。在这期间,许多镜头像差的表达式陆续提出并被普遍认同和采用,建立起了较多的镜头像差模型。这些模型是在原来摄像测量模型的基础上增添了许多新的概念,如像元、像素、焦距、像元的倾斜等[7]。而从摄像机标定的角度来看,传统摄像机标定的概念已经比较成熟。传统的摄像机标定一般指利用一个标准参照物与其对应图像的约束关系,来确定摄像机模型的参数,可以通过一幅以上的图像进行标定。如果不考虑镜头像差的影响,可以使用线性方法标定,如直接线性变换法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liezi360

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值