Jacobian矩阵和Hessian矩阵

1.Jacobian

在向量分析中,雅可比矩阵是一阶偏导数以一定方式排列形成的矩阵,其行列式称为雅可比行列式,还有,在代数几何中,代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个代数群,曲线可以嵌入其中。

雅可比矩阵
雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近,因此,雅可比矩阵类似于多元函数的导数。

假设 F:RnRm 是一个从欧式n维空间转换到欧式m维空间的函数,这个函数有m个实函数组成:y1(x1,…,xn),…,ym(x1,…xn).这些函数的偏导数(如果存在)可以组成一个m行n列的矩阵,这就是所谓的雅可比矩阵:

αy1αx1αymαx1αy1αxnαymαxn

此矩阵表示为: JF(x1,...,xn)
这个矩阵的第i行是由梯度函数的转置 yi(i=1,...,m) 表示的。

如果P Rn 的一点,F在p点可微,那么在这一点的导数由 JF(p) 给出(这是求该点导数最简便的方法)。在此情况下,由 F(p) 描述的线性算子即接近点p的F的最优线性逼近,x逼近于p:

F(x)F(p)+JF(p)(xp)

雅可比行列式

如果m=n,那么F是从n为空间到n为空间的函数,且他的雅可比矩阵是一个方块矩阵,于是我们可以取它的行列式,称为雅可比行列式。

在某个给定点的雅可比行列式提供了在接近该点时的表现的重要信息。例如,如果连续可微函数F在p点的雅可比行列式不为0,那么它在该点附近具有反函数。这称为反函数定理。更进一步,如果p点的雅可比行列式是正数,则F在p点的取向不变;如果为负数,则F的取向相反。而从雅可比行列式的绝对值,就可以知道函数F在p点的缩放因子;这就是为什么它出现在换元积分法中。

2.海森Hessian矩阵

在数学中,海森矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,此函数如下:

f(x1,x2,...,xn

如果f的所有二阶导数都存在,那么f的海森矩阵即:
H(f)ij(x)=DiDjf(x)

其中{x=(x_1,x_2,…,x_n)},即H(f)为:
α2fαx21α2fαx2αx1α2fαxnαx1α2fαx1αx2α2fαx22α2fαxnαx2α2fαx1αxnα2fαx2αxnα2fαx2n

最优化问题

在最优化的问题中,非线性问题,牛顿提供了一种求解方法。假设任务一个目标函数f,求函数f的极大极小问题,可以转化为求解函数f的导数 f=0 ,剩下的问题就是牛顿法。

这次为了求解 f=0 ,把法f(x)的泰勒展开,展开到2阶形式:

f(x+Δx)=f(x)+f(x)Δx+12f′′(x)Δx2

这个等式成立,当且仅当 Δ x无限趋近于0时, f(x+Δx)=f(x) ,约去这两项,并对余项式 f(x)Δx+12f′′(x)Δx2=0Δx
f(x)+f′′(x)Δx=0

求解:
Δx=f(xn)f′′(xn)

得出迭代公式:
xn+1=xnf(xn)f′′(xn),n=0,1,...

xn+1=xn[Hf(xn)]1Δf(xn),n0

连接:http://jacoxu.com/?p=146

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值