感谢您的邀请,我很高兴能够参与这次活动并分享我的看法。
随着人工智能技术的不断发展,语言模型作为其中的重要组成部分,已经在多个领域展现出了强大的应用能力。其中,百度的DuerOS语音助手就是一个非常成功的案例,它采用了类似于GPT的自然语言生成模型,可以进行智能对话、语音识别等功能,为用户带来了更加便捷、自然的交互体验。
不过,尽管如此,我认为目前的语言模型还远远没有达到人类智慧的水平。比如,当前的语言模型在处理常识推理、情感理解等方面仍然存在许多局限性,导致其无法真正理解人类的思维和情感,难以做到真正的智能交互。因此,我们需要继续加强对语言模型的研究,探索更加先进的技术和算法,以提高语言模型的智能化程度。
在这方面,中国版的ChatGPT“狂飙”无疑是一个非常好的机会。作为一个针对中文语境下的大型语言模型,它有望在中文自然语言处理、知识图谱等方面取得更加优秀的表现。与此同时,我们还需要注意到,中文的语言特点与英文等其他语言有很大的不同,因此在研究中文语言模型的同时,还需要结合中文语言的特点进行深入分析和研究。
总的来说,我认为语言模型作为人工智能技术的重要组成部分,其在未来的发展前景是非常广阔的。虽然当前的技术还存在一些局限性和挑战,但我们可以通过不断地创新和探索,进一步提升语言模型的智能化程度,使其能够更好地为人类服务。
卓越扩展性:能够支持训练拥有数千亿参数的模型,并在多节点多 GPU 系统上展现出卓越的扩展性。因此,即使是一个拥有 130 亿参数的模型,也只需 1.25 小时就能完成训练。而对于拥1750亿参数的模型,使用Deep Speed Chat进行训练也只需不到一天的时间。
注意:在Azure上训练时由于GPU不同,所以训练时间和费用也各不相同。
全民ChatGPT时代来了
做个不太恰当的比喻,微软此次开源Deep Speed Chat就像当年的互联网,为了提升发展速率降低了台式机的价格,使得普通用户也能拥有自己的电脑。
只有参与的用户多了,整个行业生态才能快速壮大发展,所以,微软此次开源对整个ChatGPT生态发展起到了至关重要的推动作用,使得人人都能拥有自己的ChatGPT。
目前,ChatGPT处于初级发展阶段,存在安全隐患、数据隐私、道德等问题。相信随着参与用户的增多,这些难题将会被有效的解决,从而为全球经济发展做出贡