线性代数的本质(2)——线性相关/无关、秩、伴随矩阵、线性方程组、核、像

本篇文章的内容是基于上一篇文章的内容来的,所以没看过上篇文章的同学可以先看看上篇文章《线性代数的本质(1)——基底、向量、线性变换、逆阵、行列式
本篇文章的内容主要是线性相关/无关、秩、伴随矩阵、线性方程组、核与像,我这里也是翻来覆去看了几遍尤其是秩后面这几个东西,所以很有可能理解的不到位,或者直接出现错误,希望各位能够多多包涵,并且提出宝贵的意见。
再次强调,这篇文章不是以应试为目的的,而是在于讲解线性代数的本质,如果是只想学会怎样计算的同学可以不用浪费时间了。

一、线性相关/无关

刚刚翻了翻前面的那篇文章,发现并没有详细的写明这个问题,所以我觉得有必要在这篇文章里面详细的谈一谈这个内容。

1. 线性相关

线性相关的含义为:某个向量能被其他向量表示出来。用另外一个通俗的语言来讲就是几个向量共线(共面、共空间、共超平面),用图来解释就是如下:
线性相关
我们会发现,这里有两个向量,从几何上说,他们应该撑起一个平面,但是他们却在一条线上;从数值上来说,蓝色向量就是红色向量的-2倍(这里负号是指方向相反),所以这就是线性相关。

这是最简单的一种线性相关的类型,就是某个向量是另外一个向量的倍数,当然还有另外一种,就是某个向量能被其他几个向量表达出来,如下:
线性相关
三维的图太难画了,大家凑合着看看吧QTAQ(这是在卖萌)

大家会发现,这是属于共面的情况,粉色与蓝色的向量好不容易撑起来了一个平面,红色这个小三就硬生生插入了进来开始了幸福的3P(people)生活,这也是线性相关的一个情况。

2. 线性无关

从上面线性相关的情况来看,线性无关就是任意一个向量都不能被其他向量表示出来,用一个图来说明就是:
线性无关
用一句简单的歌词来说就是:“反正他都不难受,他只要自由,他都不会理会我的感受,退到无路可走不如就放开手,我也想要自由”。于是小红和小蓝各奔东西,各自撑起了一片天地(2个向量撑起了2维)。

二、秩

3B1B对秩(rank)的定义给的是“列空间的维数”,不过我更倾向于另外一个定义“变换后的空间的维数”,通俗来讲就是这些向量撑起了多大的空间

1. 满秩

从名字来看,我们就可以看出来,满秩的意思就是说,有多少个向量,那么就有几维空间。也就是说,在这个矩阵中每个向量之间都是线性无关的。

用一个不恰当的话来说就是,如果是满秩,那么其实每个向量都可以看作是一个基底。毕竟基底是“张成该空间的一个线性无关向量的几何”嘛。

我再把上面那张图借来用用,这就是满秩的一个情况:
满秩

2. 降秩

从满秩的定义来看,也就是说降秩里面如果是方阵,那么存在线性相关的,即存在冗余信息,即有的向量共线(面、空间、超平面),或者说不是方阵,那么就撑不起应有的空间。

当然,我感觉无论是初学者还是考研的学生,应该都看到过一句话:对于一个m×n矩阵,r(A) ≤ min(m, n),那么我们从几何的角度上来思考这个问题。

2.1 m > n

m > n是行大于列,先上个图:
m > n

我们先看看3个向量,均是线性无关的,但是为何这三个向量构成的矩阵的秩只有2?我个人总结了以下2个解释:

  1. 从图可以很直观的看出来,这三个向量始终在一个平面中,新增的这个向量并没有使整个矩阵向着更高维度进军(没有z轴坐标或者说z轴坐标都为0),所以是二维;
  2. 用基向量角度考虑,这3个向量都可以且只能投影到x与y轴,被两个基向量表示出来,而不需要第三个基向量,所以是二维。

2.2 n > m

n > m是列大于行,继续上图:
n > m

同样,这两个向量也是线性无关的,而这个矩阵的秩为2的原因我也总结了以下两点:

  1. 虽然看似确实是有3个坐标轴,但是从图上看得出来,这两个向量仍然只张开了一个平面(阴影部分),并没有扩展成一个立体;
  2. 我们仍然用基向量的概念来解释,z轴肯定有个基向量这个不用考虑,而另外一个基向量应该是在x轴与y轴的角平分线上,我们可以用另外一个图来看看:
    角平分线
    虚线指的是这个平面在x与y轴方向延伸的方向,基向量我们仍然可以取1,不过这个基向量就与x和y轴分别有了45°的夹角。

结合上上篇文章我们说的内容,我们又可以推导出下面的内容:

  1. 如果为方阵:满秩 = 任何两个向量线性无关 = 没有冗余 = 任何一个向量都不会被其他向量表示 = 空间变化率不为0 = 行列式不为0;
  2. 如果为方阵: 降秩 = 存在向量线性相关 = 有冗余 = 两个或多个向量在同一平面(点、空间、超平面) = 空间变化率为0 = 行列式为0;
  3. 如果不为方阵: 一定降秩 = 没有撑起相应的空间 = 没有行列式 = 没有逆阵。

三、伴随矩阵

伴随矩阵是我考研的时候最讨厌的东西,因为计算量贼大,所以每次算逆阵我都是用初等变换解决的。这一坨我的理解可能就稍微不是那么完全,也比较浅显,甚至有错误。

用伴随矩阵求逆阵的公式是:A-1 = A* / |A|。A*是矩阵A的代数余子式构成的矩阵。如果对这个除法有疑问(不是说矩阵中不能用除法么),这里要在强调下,行列式是个,是空间变换率

而用初等变换(这里只用初等行变换,列变换同理)的方法是如下:(A|E)→(E|A-1)。

由于我也没学过高等代数,就用我最浅显的理解来谈,初等变换是对A这个矩阵一次又一次的变换,最后慢慢变换为一个单位阵,也就求得了逆阵,即将A对向量一步一步的逆转回去的过程。那么我们在上篇文章中也提到了,矩阵与矩阵的乘法的含义是两个线性变换相继作用,那么伴随矩阵在我个人的理解中就是个工具人,就是使得这些线性变换能够一步到位的过程。

注:如果这节有问题,欢迎指教

四、线性方程组

我们这里主要是讨论线性方程组解的结构,下面的大部分内容是我个人的理解,如果有偏差或者错误请指出。

在讲解线性方程组之前先提三个概念:

  • 核(kernel):也称作零空间,是指在线性变换中被压缩掉的空间
  • 像(image):是指线性变换后映射的空间,也可以理解为线性变换中没有被压缩掉的空间
  • 维数定理:dim(Ker(A)) + dim(Im(A)) = n

1. 非齐次线性方程组

形如Ax = b的方程组,可以将方程组转换为矩阵与向量的乘法,如下:
非齐次线性方程组
用上一篇文章矩阵乘向量的内容来解释就是:向量(x y)T在矩阵的作用下变换到了向量(e f)T的位置

解的结构有如下三种:

  1. 矩阵的秩不等于增广矩阵的秩:无解;
  2. 矩阵的秩等于增广矩阵的秩且等于满秩:有唯一解;
  3. 矩阵的秩等于增广矩阵的秩且不等于满秩:有无穷解。

这里指的增广矩阵为(A|b)。

1.1 无解

我们先从无解的前提“矩阵的秩不等于增广矩阵的秩”来解读,这句话是说明了矩阵肯定小于增广矩阵的秩,因为这是个子集的概念(矩阵为增广矩阵的子集),那么就说明了矩阵中肯定有更多的经过初等行变换后为0的行,我们假定如下这种情况,矩阵最后一行为0,但是b的最后一行不为0:
在这里插入图片描述
那么为何无解?结合上上面说的变换的问题来看,就是这三个向量都在x-y平面,但是硬要在z轴给扩展到3的位置,但是在实数空间我们没法做到升维这种操作,所以实数空间没有向量能够在这种情况下升维,所以无解

而用数值的方式就很容易解释了,单看某个方程,方程为0 = a(a为任意不为0的常数),这明显不可能对吧。

1.2 有唯一解

有唯一解这个就很好理解了,由于是满秩,向量们撑起来了应有的空间,且变换的时候空间没有被压缩,向量在矩阵的作用下变换到了另一个向量的位置,所以这个变换是唯一的变换,所以只有一个解。

用数值的方式也很好理解,有多少个未知数,就有多少个方程,那么方程的解是唯一的。

1.3 有无穷解

我们先看矩阵,如果是方阵,那么说明空间被压缩了,如果不是方阵,那么说明向量并没有撑起来应有的空间,那么无论从哪方面看,整个空间都是被压缩了的,在压缩的过程中,会有那么一些空间(线、平面、空间)被压缩到0向量的位置上,而这些被压缩到零向量上的空间就统称为零空间或者说,而对于一个空间而言,点是无穷的,那么要使这个线性变换成立,这个空间上的点都是可行的,所以有无穷解。

而这个从数值上来说就是未知数个数大于方程的个数,就好比我们最终解方程组解出来剩下一个方程3x + 5z = 2,那么是不是x和z可以取无穷多的值?

2. 齐次线性方程组

形如Ax = 0的方程组,可以将方程组转换为矩阵与向量的乘法,如下:
齐次线性方程组

用上一篇文章矩阵乘向量的内容来解释就是:向量(x y)T在矩阵的作用下变换到了零向量的位置

解的结构有如下两种:

  1. 只有零解:未知数个数等于秩(方程组数量);
  2. 有非零解:秩(方程组数量)小于未知数个数。

2.1 只有0解

未知数个数等于方程组数量,那么说明这个空间没有被压缩,那么要使得一个向量在矩阵的作用下变到零向量,那么就只有可能这个向量本身就是个零向量。因为这个矩阵不为零,那么说明这个矩阵的作用只会使得向量放缩、旋转、剪切等,并不会压缩到0。

从数值上来说就好比2x = 0 → x = 0。

2.2 有非零解

由于方程组数量小于未知数个数,那么说明空间有压缩,那么同上面一样,会有个空间(线、平面、空间、超平面)被压缩到零空间,而这个空间的点有无穷的,所以有非零解。

从数值上来说,就和上面的例子一样,只不过这次是2x + 3y = 0。

这里也看得出来,其实齐次线性方程组是非齐次线性方程组的一个特例。

五、总结

由于这里写了差不多快5000字了,所以关于映射(单射、满射)的内容我们下次再讨论。码字画图不易,麻烦点个赞再走可以么[doge]。

  1. 线性相关与线性无关的几何意义;
  2. 秩的几何意义,以及何为满秩、何为降秩;
  3. 伴随矩阵是个工具人;
  4. 线性方程组解的结构;
  5. 像、核的定义。

六、参考

[1]3Blue1Brown.【官方双语/合集】线性代数的本质 - 系列合集[EB/OL].https://www.bilibili.com/video/BV1ys411472E,2016-10-18.
[2][日]平冈和幸,堀玄.程序员的数学3线性代数[M].人民邮电出版社:北京,2016.3:5.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值