物体距离与在图像上的像素的关系图

本文介绍了一种基于小孔成像原理的测距方法,并详细探讨了该方法的有效范围及精度变化特点。通过实验得出,在33米至66米间,物体宽度信息的敏感度急剧下降,测距准确性降低。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

风格:本文字讲了一些实验中的细节,没有什么高深的理论,是一些实验心得,讲了一些操作细节,如果不需要只提取主要想法即可。若对你工作中有些帮助,缩短了您的尝试或者开发时间,请点个赞给些鼓励。

实验背景:横轴为物体距相机的距离,单位是m,纵轴为物体图像上的宽度,单位是pixel,图像分辨率是3840x2160,可以看到在33~66m时,物体宽度敏感度急剧下降,也就是再利用宽度信息时100m和150m几乎没有区别

解释:这个曲线是我实验的结果,而且这个是曲线关系是合理的,举个例子,你要根据前车的在图像中的成像宽度,测量前车距离你自己的距离,根据小孔成像的等比例关系,f/d = x/w 即 d = f*w/x,f:焦距,w:车辆的真实宽度,x:车辆的成像宽度[像素数],很明显,前车距离和成像宽度成反比例关系,所以曲线从理论和实验上都是非常合理地。

建议

  • 用小孔成像进行测距,在远处侧测距极具不稳定【我这里约>50m】不同的相机可能不同,根绝自己的相机情况而定,怎么确定,建议自己做个实验,有条件的可以找辆车由近到远进行实验。没有条件的可以找个横杆,进行实验。车辆要测量出他的实际宽度,横杆也要测量出他的实际物理宽度,车辆或者横杆在图像中的像素数则通过算法检测出来【分割或者检测网络】,焦距标定出来,实际的距离也要测量出来,这样根据上面的解释公式,就可以画出如上的曲线。
  • 关于几个数据的测量, f焦距:,我实际做的时候是标定出来的参数,opencv的标定工具,也是最常用的一种,f的单位是像素,并非物理单位,车辆或者横杆的物理宽度测量:这个十分简单,直接尺子量即可,建议横杆最好长一些,这样相对误差就小一些,画出的曲线关系就会更准确一些。实际距离:可以用激光笔,或者卷尺进行测量,当然实际的经验是找一段断头路,在路上用粉笔画上距离,1-100m,做上标记,然后车辆可以由近到远进行开。这样做的好处在于安全,重复使用,我相信在整个项目中有可能会反复用到。难点在于找一段比较长而且直的路,好在北京有很多修路的地方,很多断头路,已经有了车道线虚实线,非常笔直,我们只需要在车道线上画标记即可。成像宽度:也就是车或者横杆在图像中的像素数,这个通过检测网络或者分割网络进行得到,当然分割网络分割完后需要有些后处理统计横向的像素数目
  • 关于此方法测距精度的提升问题,还可以考虑,利用纵向进行计算,或者横向和纵向都计算进行加权,具体是纵向测距比较准确还是横向测距比较准确,也是需要根据自己的实际场景进行抉择。比如如果物体大多数值高比宽长,那一般来说利用高度进行计算比较好,要是检测宽比检测高稳定,那就利用宽度计算比较好。这个方法只适用于与成像平面大致平行的物体。
  • 以上这些细节的东西,有用就可以参考,无用就可以忽略

用途:

讲了这么些,这个图有什么用呢

  • 最明显的用途是指导测距的精度,那个范围内是准确的靠谱的,这个显而易见
  • 还有一个用途是在视频中,当检测检测框不准的时候,也就是检测框忽大忽小,这是在检测中很容易遇到的情况,可以利用此图的距离和检测框的关系进行平滑或者预估,也就是滤波,这也是一个很实际的应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值