刘二PyTorch深度学习(九)——CNN基础

卷积神经网络CNN(Convolutional Neural Network)

  1. 下采样(Subsampling):减少数据量,减少元素数量,降低运算需求

  2. 卷积神经网络主要包括:特征提取器——Feature Extraction(对图像做卷积运算,通过卷积运算来找到图像的某种特征)和分类器(通过分类器转化为向量,再利用全连接网络做分类)

  3. 卷积过程:(单通道)

多通道卷积运算

要求:

1>每一个卷积和的通道的数量和输入通道的数量要是一致的

2>卷积和的总数和输出通道的数量是一致的

解析:有一个n*w*h输入维度,如果想得到m*w*h维度的输出,那么卷积核的维度就要是n*w'*h',而这样的卷积和一共要有m个(上图就是所构建卷积的权重:输出通道*输入通道*卷积核宽*卷积核高)

  1. 如果卷积核是3*3的话,那么输出图像宽度=输入图像宽度-2

  2. padding:因为如果用3*3卷积核的话,输出的宽度就一定会比输入的宽度小2个单位,如果想让输出和输入像素一样的话,就要加一个padding(计算几圈padding的方法——整除:用卷积核的宽度除以2,取整数部分,例如:宽度为3,就是3/2的整数部分是1,那么就加1圈padding;如果卷积核的宽度是5,就是5/2,其整数部分就是2,那么就加2圈padding)

  1. 当设置MaxPool2d中的kernel_size=2时,那么步长stride也等于2

  2. 卷积的变换过程(最后是全连接层:用view做一个线性变换——torch.nn.Linear(320,10))

  1. 卷积输出大小计算公式

  1. 如果再对第七步进行池化的话,batch和输出通道都不变,只不过长宽要缩小为原来的一半

  2. 池化:如果没有权重的话,做一个池化层就可以了,如果有权重的话,每一层都要做一个池化

  1. 用显卡GPU计算分如下几步:

 代码1:用PyTorch实现卷积网络、

import torch

# 定义相关参数
in_channels, out_channels = 5, 10
width, height = 100, 100
kernel_size = 3
batch_size = 1

# 定义输入图片变量
input = torch.randn(batch_size, in_channels, width, height)

# 定义卷积层
conv_layer = torch.nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size)

# 求出输出
output = conv_layer(input)

print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

代码2:带padding(保证输出和输入的维度一样)

import torch

input = [3, 4, 6, 5, 7,
         2, 4, 6, 8, 2,
         1, 6, 7, 8, 4,
         9, 7, 4, 6, 2,
         3, 7, 5, 4, 1]

# view:无论怎么变,元素的总数量是不变的,如果行列中出现-1,那么就要动态补全所有元素量
# view(batch,Channel,width,height)
input = torch.Tensor(input).view(1, 1, 5, 5)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)
# 定义卷积核的具体形式;view(output,input,weight,height)
kernel = torch.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(1, 1, 3, 3)

conv_layer.weight.data = kernel.data

output = conv_layer(input)
print(output)

代码3:带stride

import torch

input = [3, 4, 6, 5, 7,
         2, 4, 6, 8, 2,
         1, 6, 7, 8, 4,
         9, 7, 4, 6, 2,
         3, 7, 5, 4, 1]

input=torch.Tensor(input).view(1,1,5,5)
conv_layer=torch.nn.Conv2d(1,2,kernel_size=3,stride=2,bias=False)
kernel=torch.Tensor([1,2,3,4,5,6,7,8,9]).view(1,1,3,3)
conv_layer.weight.data=kernel.data

output=conv_layer(input)
print(output.data)

代码4:最大池化层

import torch

input = [3, 4, 6, 5,
         2, 4, 6, 8,
         1, 6, 7, 8,
         9, 7, 4, 6]

input=torch.Tensor(input).view(1,1,4,4)
maxpooling_layer=torch.nn.MaxPool2d(kernel_size=2)#定义最大池化层

output=maxpooling_layer(input)
print(output.data)

用代码实现卷积神经网络

import torch
from torchvision import datasets
from torchvision import transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim

batch_size = 64
# 如果transforms.ToTensor()不加后面的括号,则会报错:__init__() takes 1 positional argument but 2 were given
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])

# 如果train_dataset中的参数transform赋值为空,或者赋错值了,就会报错:‘module‘ object is not callable
train_dataset = datasets.MNIST(root='./data/mnist/', train=True, download=False, transform=transform)
train_dataloader = DataLoader(dataset=train_dataset, shuffle=True, batch_size=batch_size)

test_dataset = datasets.MNIST(root='./data/mnist/', train=False, download=False, transform=transform)
test_dataloader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)


class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        # fcl:Fullly Connected Layer(全连接层)
        self.fc = torch.nn.Linear(320, 10)

    def forward(self, x):
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)
        x = self.fc(x)
        return x


model = Net()

criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


# 封装训练方法和测试方法
def train(epoch):
    running_loss = 0.0
    for batch_index, data in enumerate(train_dataloader, 0):
        inputs, target = data
        y_pred = model(inputs)
        loss = criterion(y_pred, target)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        running_loss += loss.item()

        if batch_index % 300 == 299:
            print('[%d,%5d] loss: %.3f' % (epoch + 1, batch_index + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_dataloader:
            images, labels = data
            outputs = model(images)
            # 求出每一行最大值的下标
            _, predicted = torch.max(outputs.data, dim=1)  # dim=0表示行(矩阵从上到下),dim=1表示列(矩阵从左到右)
            total += labels.size(0)  # labels是一个(N,1)的元组
            correct += (predicted == labels).sum().item()

    print('Accuracy on testset %d %%' % (100 * correct / total))


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()

 GPU版本

import torch
from torchvision import datasets
from torchvision import transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt

batch_size = 64
# 如果transforms.ToTensor()不加后面的括号,则会报错:__init__() takes 1 positional argument but 2 were given
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])

# 如果train_dataset中的参数transform赋值为空,或者赋错值了,就会报错:‘module‘ object is not callable
train_dataset = datasets.MNIST(root='./data/mnist/', train=True, download=False, transform=transform)
train_dataloader = DataLoader(dataset=train_dataset, shuffle=True, batch_size=batch_size)

test_dataset = datasets.MNIST(root='./data/mnist/', train=False, download=False, transform=transform)
test_dataloader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)


class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        # fcl:Fullly Connected Layer(全连接层)
        self.fc = torch.nn.Linear(320, 10)

    def forward(self, x):
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)
        x = self.fc(x)
        return x


model = Net()

# GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)

criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)


# 封装训练方法和测试方法
def train(epoch):
    running_loss = 0.0
    for batch_index, data in enumerate(train_dataloader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)# GPU
        y_pred = model(inputs)
        loss = criterion(y_pred, target)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        running_loss += loss.item()

        if batch_index % 300 == 299:
            print('[%d,%5d] loss: %.3f' % (epoch + 1, batch_index + 1, running_loss / 300))
            running_loss = 0.0


def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_dataloader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)# GPU
            outputs = model(images)
            # 求出每一行最大值的下标
            _, predicted = torch.max(outputs.data, dim=1)  # dim=0表示行(矩阵从上到下),dim=1表示列(矩阵从左到右)
            total += labels.size(0)  # labels是一个(N,1)的元组
            correct += (predicted == labels).sum().item()

    print('Accuracy on testset %d %%' % (100 * correct / total))
    return correct / total


if __name__ == '__main__':
    epoc_list = []
    accu_list = []
    for epoch in range(10):
        train(epoch)
        acc = test()
        epoc_list.append(epoch)
        accu_list.append(acc)

    plt.plot(epoc_list, accu_list)
    plt.xlabel('epoch')
    plt.ylabel('Accuracy')
    plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值