隐马尔可夫模型:状态序列估计问题

本文详细介绍了隐马尔可夫模型(HMM)中使用维特比算法解决状态序列估计问题的过程。维特比算法旨在找到在给定观察序列和模型下,使条件概率P(Q|O;μ)最大的状态序列,从而避免非法序列和“断序”问题。算法通过动态规划计算每一步到达各个状态的最大概率,并记录路径,最后回溯得到最优状态序列。算法的时间复杂度为O(N²T)。
摘要由CSDN通过智能技术生成

隐马尔可夫模型:状态序列估计问题(维特比算法)

维特比(Viterbi)算法用于求解HMM的第二个问题,即给定观察序列 O = O 1 O 2 ⋯ O T O = O_{1} O_{2} \cdots O_{T} O=O1O2OT和模型 μ = ( A , B , π ) \mu = (\mathbf{A}, \mathbf{B}, \mathbf{\pi}) μ=(A,B,π),选择在一定意义下“最优”的状态序列 Q = q 1 q 2 ⋯ q T Q = q_{1} q_{2} \cdots q_{T} Q=q1q2qT,使得该状态序列“最好地解释”观察序列。该问题的答案并不唯一,它取决于对“最优状态序列”的理解。一种理解是,使该状态序列中每一个状态都单独地具有最大概率,即使 γ t ( i ) = P ( q t = s i ∣ O ; μ ) \gamma_{t}(i) = P(q_{t} = s_{i} | O; \mu) γt(i)=P(qt=siO;μ)最大。

根据贝叶斯公式,

γ t ( i ) = P ( q t = s i ∣ O ; μ ) = P ( q t = s i , O ; μ ) P ( O ; μ ) = α t ( i ) β t ( i ) ∑ i = 1 N α t ( i ) β t ( i ) (6-19) \begin{aligned} \gamma_{t}(i) & = P(q_{t} = s_{i} | O; \mu) \\ & = \frac{P(q_{t} = s_{i}, O; \mu)}{P(O; \mu)} \\ & = \frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{i = 1}^{N} \alpha_{t}(i) \beta_{t}(i)} \\ \end{aligned} \tag {6-19} γt(i)=P(qt=siO;μ)=P(O;μ)P(qt=si,O;μ)

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值