酉矩阵(Unitary Matrix)是线性代数中复数域上的一个重要概念,是正交矩阵在复数域的扩展。
1. 酉矩阵的定义
一个
n
×
n
n \times n
n×n 的复矩阵
U
U
U 被称为酉矩阵,当且仅当:
U
†
U
=
U
U
†
=
E
U^\dagger U = U U^\dagger = E
U†U=UU†=E
其中:
- U † U^\dagger U†:是矩阵 U U U 的共轭转置(Hermitian Transpose),即先对矩阵中的每个元素取共轭,再对矩阵转置。
- E E E:是 n × n n \times n n×n 的单位矩阵。
等式 U † U = E U^\dagger U = E U†U=E 表明矩阵 U U U 的列向量是复向量空间中的正交归一基。
2. 酉矩阵的性质
-
保持内积:
- 对于任意两个复向量
x
x
x 和
y
y
y,如果它们经过酉矩阵
U
U
U 的变换,则内积保持不变:
⟨ U x , U y ⟩ = ⟨ x , y ⟩ \langle Ux, Uy \rangle = \langle x, y \rangle ⟨Ux,Uy⟩=⟨x,y⟩ - 这表明酉矩阵是保持长度和角度的线性变换。
- 对于任意两个复向量
x
x
x 和
y
y
y,如果它们经过酉矩阵
U
U
U 的变换,则内积保持不变:
-
保持向量长度:
- 对任意向量
x
x
x,经过酉矩阵作用后,其长度不变:
∥ U x ∥ = ∥ x ∥ \|Ux\| = \|x\| ∥Ux∥=∥x∥
- 对任意向量
x
x
x,经过酉矩阵作用后,其长度不变:
-
逆矩阵等于共轭转置:
- U † = U − 1 U^\dagger = U^{-1} U†=U−1,这与正交矩阵的性质 W T = W − 1 W^T = W^{-1} WT=W−1 类似。
-
酉矩阵的特征值:
- 酉矩阵的所有特征值都是单位圆上的复数,即模长为 1 的复数,形如 e i θ e^{i\theta} eiθ,其中 θ \theta θ 是实数。
-
行向量和列向量的正交归一性:
- 酉矩阵的行向量和列向量都构成复数向量空间的正交归一基。
3. 酉矩阵的几何意义
酉矩阵描述的是复数向量空间中的等距变换,包括:
- 旋转:在复数向量空间中旋转向量。
- 反射:沿某一复数方向反射向量。
在实数空间中,酉矩阵的几何意义与正交矩阵类似,描述了保持长度和角度的变换。
4. 酉矩阵的例子
例 1:单位矩阵
单位矩阵是一个酉矩阵:
U
=
[
1
0
0
1
]
U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
U=[1001]
例 2:二维复数旋转矩阵
一个二维酉矩阵可以表示为:
U
=
[
e
i
θ
0
0
e
i
ϕ
]
U = \begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{i\phi} \end{bmatrix}
U=[eiθ00eiϕ]
其中
e
i
θ
e^{i\theta}
eiθ 和
e
i
ϕ
e^{i\phi}
eiϕ 是单位圆上的复数。
例 3:量子力学中的酉矩阵
在量子力学中,酉矩阵用于描述量子态的演化。例如,量子门矩阵(如 Hadamard 门)是酉矩阵:
H
=
1
2
[
1
1
1
−
1
]
H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}
H=21[111−1]
5. 酉矩阵与正交矩阵的关系
- 正交矩阵:是酉矩阵在实数域上的特殊情况。
- 正交矩阵满足 W T W = W W T = E W^T W = W W^T = E WTW=WWT=E。
- 酉矩阵:在复数域上推广了正交矩阵。
- 酉矩阵满足 U † U = U U † = E U^\dagger U = U U^\dagger = E U†U=UU†=E。
6. 酉矩阵的应用
-
量子力学:
- 酉矩阵用于描述量子态的演化(守恒性变换),例如薛定谔方程中的时间演化算符是酉矩阵。
-
信号处理:
- 在傅里叶变换中,离散傅里叶变换矩阵是一个酉矩阵。
-
机器学习:
- 在特征值分解和奇异值分解中,酉矩阵用于描述复数向量空间的正交变换。
-
密码学:
- 在某些量子密码学算法中,酉矩阵用于表示复杂的量子变换。
7. 总结
酉矩阵是复数域上的正交矩阵,满足 U † U = U U † = E U^\dagger U = U U^\dagger = E U†U=UU†=E。它在复向量空间中描述了保持内积(长度和角度)的线性变换。酉矩阵广泛应用于量子力学、信号处理和机器学习中,具有重要的理论意义和实际价值。