什么是酉矩阵

酉矩阵(Unitary Matrix)是线性代数中复数域上的一个重要概念,是正交矩阵在复数域的扩展。


1. 酉矩阵的定义

一个 n × n n \times n n×n 的复矩阵 U U U 被称为酉矩阵,当且仅当:
U † U = U U † = E U^\dagger U = U U^\dagger = E UU=UU=E
其中:

  • U † U^\dagger U:是矩阵 U U U共轭转置(Hermitian Transpose),即先对矩阵中的每个元素取共轭,再对矩阵转置。
  • E E E:是 n × n n \times n n×n 的单位矩阵。

等式 U † U = E U^\dagger U = E UU=E 表明矩阵 U U U 的列向量是复向量空间中的正交归一基


2. 酉矩阵的性质

  1. 保持内积

    • 对于任意两个复向量 x x x y y y,如果它们经过酉矩阵 U U U 的变换,则内积保持不变:
      ⟨ U x , U y ⟩ = ⟨ x , y ⟩ \langle Ux, Uy \rangle = \langle x, y \rangle Ux,Uy=x,y
    • 这表明酉矩阵是保持长度和角度的线性变换
  2. 保持向量长度

    • 对任意向量 x x x,经过酉矩阵作用后,其长度不变:
      ∥ U x ∥ = ∥ x ∥ \|Ux\| = \|x\| Ux=x
  3. 逆矩阵等于共轭转置

    • U † = U − 1 U^\dagger = U^{-1} U=U1,这与正交矩阵的性质 W T = W − 1 W^T = W^{-1} WT=W1 类似。
  4. 酉矩阵的特征值

    • 酉矩阵的所有特征值都是单位圆上的复数,即模长为 1 的复数,形如 e i θ e^{i\theta} eiθ,其中 θ \theta θ 是实数。
  5. 行向量和列向量的正交归一性

    • 酉矩阵的行向量和列向量都构成复数向量空间的正交归一基。

3. 酉矩阵的几何意义

酉矩阵描述的是复数向量空间中的等距变换,包括:

  1. 旋转:在复数向量空间中旋转向量。
  2. 反射:沿某一复数方向反射向量。

在实数空间中,酉矩阵的几何意义与正交矩阵类似,描述了保持长度和角度的变换。


4. 酉矩阵的例子

例 1:单位矩阵

单位矩阵是一个酉矩阵:
U = [ 1 0 0 1 ] U = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} U=[1001]

例 2:二维复数旋转矩阵

一个二维酉矩阵可以表示为:
U = [ e i θ 0 0 e i ϕ ] U = \begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{i\phi} \end{bmatrix} U=[eiθ00eiϕ]
其中 e i θ e^{i\theta} eiθ e i ϕ e^{i\phi} eiϕ 是单位圆上的复数。

例 3:量子力学中的酉矩阵

在量子力学中,酉矩阵用于描述量子态的演化。例如,量子门矩阵(如 Hadamard 门)是酉矩阵:
H = 1 2 [ 1 1 1 − 1 ] H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} H=2 1[1111]


5. 酉矩阵与正交矩阵的关系

  • 正交矩阵:是酉矩阵在实数域上的特殊情况。
    • 正交矩阵满足 W T W = W W T = E W^T W = W W^T = E WTW=WWT=E
  • 酉矩阵:在复数域上推广了正交矩阵。
    • 酉矩阵满足 U † U = U U † = E U^\dagger U = U U^\dagger = E UU=UU=E

6. 酉矩阵的应用

  1. 量子力学

    • 酉矩阵用于描述量子态的演化(守恒性变换),例如薛定谔方程中的时间演化算符是酉矩阵。
  2. 信号处理

    • 在傅里叶变换中,离散傅里叶变换矩阵是一个酉矩阵。
  3. 机器学习

    • 在特征值分解和奇异值分解中,酉矩阵用于描述复数向量空间的正交变换。
  4. 密码学

    • 在某些量子密码学算法中,酉矩阵用于表示复杂的量子变换。

7. 总结

酉矩阵是复数域上的正交矩阵,满足 U † U = U U † = E U^\dagger U = U U^\dagger = E UU=UU=E。它在复向量空间中描述了保持内积(长度和角度)的线性变换。酉矩阵广泛应用于量子力学、信号处理和机器学习中,具有重要的理论意义和实际价值。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彬彬侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值