一、问题的提出
交通网络受各类因素影响,不同时段、不同道路的交通流间相互关联、彼此作用,且显示出不确定性和复杂性。
二、交通流预测的相关工作
1.基于数据驱动的城市路网短期交通流预测模型
该模型先将时间序列划分为趋势序列和残差序列。对这两个时间序列重构后,进行了基于LSTM-RNN的模型训练和预测。然后将这两个结果组合在一起,产生最后的预测。最后在两个城市道路网对模型进行评价。结果显示,数据处理模型增强了模型的鲁棒性。但LSTM和RNN存在梯度弥散和梯度爆炸问题。
2.基于DNN的交通预测模型(DNN-BTF)
该模型运用交通流的周期性和时空特性以及注意力机制,可以自动学习历史交通流量的重要特征。使用CNN模型提取交通流的空间特征,使用RNN提取交通流的时间特征。虽然CNN可以有效的提取网格数据的空间特征,但不适合图结构的时空数据的特征描述和时空相关性分析。
3.基于图像的交通速度预测模型
可以自动学习抽象的时空交通特征来提取时间关系。
分为两大步骤。第一,将路网流量变换成图像,此图像将交通网络的时间和空间维度分别作为图像的两个维度。因为相邻路段在图像中也是邻近的,因此能够保存时空信息。
第二,使用基于CNN的深度网络模型对比图像进行交通预测。
但CNN无法直接处理路网结构
4.基于误差反馈递归卷积神经网络(eRCNN)进行车速预测
将相邻道路的时空车速视为输入矩阵,eRCNN运用相邻路段间的隐含相关性来提升模型的预测精度。
最后对北京市二三环出租车的真实数据进行大量实验,验证了eRCNN模型的优秀的预测能力,但模型没有考虑道路的交通流方向
5.使用GCN和GRU组合模型用于高速公路和出租车数据集进行车速的预测<