论文阅读3--《一种时空周期性注意力网络的交通流量预测模型》

本文研究了交通流量预测问题,提出了一种结合空间相关性和时间周期性的注意力网络模型STPAN。通过GCN捕捉城市道路网的复杂拓扑结构,LSTM和周期性注意力机制捕获时间序列依赖和周期性变化。实验表明,STPAN在PeMS数据集上的预测性能优于其他方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、问题的提出

交通网络受各类因素影响,不同时段、不同道路的交通流间相互关联、彼此作用,且显示出不确定性和复杂性。

二、交通流预测的相关工作

1.基于数据驱动的城市路网短期交通流预测模型

该模型先将时间序列划分为趋势序列和残差序列。对这两个时间序列重构后,进行了基于LSTM-RNN的模型训练和预测。然后将这两个结果组合在一起,产生最后的预测。最后在两个城市道路网对模型进行评价。结果显示,数据处理模型增强了模型的鲁棒性。但LSTM和RNN存在梯度弥散和梯度爆炸问题。

2.基于DNN的交通预测模型(DNN-BTF)

该模型运用交通流的周期性和时空特性以及注意力机制,可以自动学习历史交通流量的重要特征。使用CNN模型提取交通流的空间特征,使用RNN提取交通流的时间特征。虽然CNN可以有效的提取网格数据的空间特征,但不适合图结构的时空数据的特征描述和时空相关性分析。

3.基于图像的交通速度预测模型

可以自动学习抽象的时空交通特征来提取时间关系。
分为两大步骤。第一,将路网流量变换成图像,此图像将交通网络的时间和空间维度分别作为图像的两个维度。因为相邻路段在图像中也是邻近的,因此能够保存时空信息。
第二,使用基于CNN的深度网络模型对比图像进行交通预测。
但CNN无法直接处理路网结构

4.基于误差反馈递归卷积神经网络(eRCNN)进行车速预测

将相邻道路的时空车速视为输入矩阵,eRCNN运用相邻路段间的隐含相关性来提升模型的预测精度。
最后对北京市二三环出租车的真实数据进行大量实验,验证了eRCNN模型的优秀的预测能力,但模型没有考虑道路的交通流方向

5.使用GCN和GRU组合模型用于高速公路和出租车数据集进行车速的预测<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红心柚大果

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值