二分碎碎念

二状态的二分搜索

在刷Leetcode中,常常见到一个序列,被切分为处于不同状态 s 1 s_1 s1 s 2 s_2 s2的两个部分,例如 [ s 1 , s 1 , s 1 . . . s 2 , s 2 , s 2 ] [s_1,s_1,s_1...s_2,s_2,s_2] [s1,s1,s1...s2,s2,s2],要求找到 s 1 s_1 s1 s 2 s_2 s2切分点。这里记录一下。可以利用如下模板进行解题。

		// left和right分别为列表的左边界和右边界
		int left = 0, right = nums.length - 1;
		// 注意这里是小于而不是小于等于
        while (left < right) {
            int mid = left + ((right - left) >> 1);
            // check(mid)为真表示满足前一种状态
            if (check(mid)) {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        return left;

例如这一题

剑指 Offer 53 - II. 0~n-1中缺失的数字

剑指 Offer 53 - II. 0~n-1中缺失的数字

这里的序列被缺失的数字切分为两段,左段满足 n u m s [ i ] = i nums[i] = i nums[i]=i,而右端则 n u m s [ i ] ≠ i nums[i] \neq i nums[i]=i。用二分法搜索出切分点。

class Solution {
    public int missingNumber(int[] nums) {
        int left = 0, right = nums.length - 1;
        while (left < right) {
            int mid = left + ((right - left) >> 1);
            if (nums[mid] == mid) {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        // 考虑特殊情况,即末端缺失,例如[1];
        return nums[left] == left ? left + 1 : left;
    }
}

又例如这一题

278. 第一个错误的版本

278. 第一个错误的版本

这里以第一个错误版本为边界,将版本列表切分为[正确版本,错误版本],也可以如此搜索

/* The isBadVersion API is defined in the parent class VersionControl.
      boolean isBadVersion(int version); */

public class Solution extends VersionControl {
    public int firstBadVersion(int n) {
        int left = 1, right = n;
        while (left < right) {
            int mid = left + ((right - left) >> 1);
            if (isBadVersion(mid)) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }
}

旋转数组的二分搜索

经常看到要求旋转一个数组,求其最小值。或者利用最小值完成下一步操作。其模板如下。

		int left = 0, right = nums.length - 1;
        while (left < right) {
            int mid = left + (right - left >> 1);
            if (nums[mid] > nums[left]) {
                left = mid;
            } else if (nums[mid] < nums[left]){
                right = mid - 1;
            } else {
                left++;
            }
        }

        return left;

剑指 Offer 11. 旋转数组的最小数字

剑指 Offer 11. 旋转数组的最小数字
这里无论有没有重复元素都会搜索到最小值。但是并不能定位到旋转数组的分割点。

class Solution {
    public int minArray(int[] numbers) {
        int left = 0, right = numbers.length - 1;
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (numbers[mid] < numbers[right]) {
                right = mid;
            } else if (numbers[mid] > numbers[right]) {
                left = mid + 1;
            } else {
                right--;
            }
        }
        return numbers[left];
    }
}

33. 搜索旋转排序数组

33. 搜索旋转排序数组
当数组有重复元素,切割后

class Solution {
    public int search(int[] nums, int target) {
        int left = 0, right = nums.length - 1;
    
        while (left < right) {
            int mid = left + (right - left >> 1);
            if (nums[mid] > nums[right]) {
                left = mid + 1;
            } else if (nums[mid] < nums[right]){
                right = mid;
            } else {
                right--;
            }
        }

        int res1 = binarySearch(0, left - 1, nums, target);
        if (res1 != -1) 
            return res1;
        int res2 = binarySearch(left, nums.length - 1, nums, target);
        if (res2 != -1)
            return res2;
        return -1;
    }

    int binarySearch(int left, int right, int[] nums, int target) {
        while (left <= right) {
            int mid = left + (right - left >> 1);
            if (nums[mid] == target) {
                return mid;
            } else if (nums[mid] > target) {
                right = mid - 1;
            } else {
                left = mid + 1;
            }
        }
        return -1;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值